login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxExpOfEnd revision 8 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Editor: Bill Page
Time: 2014/09/19 23:52:55 GMT+0
Note:

added:
eq4_1:= m[X]=(x-r[1])*(x-r[2])*(x-r[3])*(x-r[4])

changed:
-Old
5 $m_X(x) \equiv (x^2-r_1^2)\ (x^2-r_2^2)$

changed:
-eq42 := _
-  -r2*r3*r4*exp(r1)/((r1-r2)*(r1-r3)*(r1-r4)) + _
-  -r1*r3*r4*exp(r2)/((r2-r1)*(r2-r3)*(r2-r4)) + _
-  -r1*r2*r4*exp(r3)/((r3-r1)*(r3-r2)*(r3-r4)) + _
-  -r1*r2*r3*exp(r4)/((r4-r1)*(r4-r2)*(r4-r3))
eq5_1:=eval(eq4_1,[r[3]=-r[1],r[4]=-r[2]])
eq5_2:= exp(X)=g[0]*id+g[1]*X+g[2]*X^2+g[3]*X^3
eq5_3a:= eval(eq4_2,[r[3]=-r[1],r[4]=-r[2]])
htrigs rhs %
eq5_3b:= eval(eq4_3,[r[3]=-r[1],r[4]=-r[2]])
htrigs rhs %
eq5_3c:= eval(eq4_4,[r[3]=-r[1],r[4]=-r[2]])
htrigs rhs %
eq5_3d:= eval(eq4_5,[r[3]=-r[1],r[4]=-r[2]])
htrigs rhs %
eq5_4:= eval(eval(eq5_2,[eq4_2,eq4_3,eq4_4,eq4_5]),[r[3]=-r[1],r[4]=-r[2]])
htrigs rhs %

changed:
-three
-\begin{axiom}
-htrigs eval(eq42, [r3=-r1,r4=-r2])
-htrigs limit(%,r2=r1)
-\end{axiom}
-
-\begin{axiom}
-eq43 :=
-  (r2*r3 + r3*r4 + r4*r2)*exp(r1)/((r1-r2)*(r1-r3)*(r1-r4)) + _
-  (r1*r3 + r3*r4 + r4*r1)*exp(r2)/((r2-r1)*(r2-r3)*(r2-r4)) + _
-  (r1*r2 + r2*r4 + r4*r1)*exp(r3)/((r3-r1)*(r3-r2)*(r3-r4)) + _
-  (r1*r2 + r2*r3 + r3*r1)*exp(r4)/((r4-r1)*(r4-r2)*(r4-r3))
-\end{axiom}
-
-\begin{axiom}
-htrigs eval(eq43, [r3=-r1,r4=-r2])
-htrigs limit(%,r2=r1)
-\end{axiom}
-



Choose n items from a list. Returns list of size binomial(#a,n) of lists.

fricas
choose(a,n) ==
  j:=[i for i in 1..n]
  r:=[[a(j(i)) for i in 1..n]]
  k:=n
  while k>0 and j(k)+n-k<#a repeat
    j(k):=j(k)+1
    for i in k..n-1 repeat j(i+1):=j(i)+1
    r:=concat(r,[a(j(i)) for i in 1..n])
    k:=n; while j(k)+n-k>=#a and k>1 repeat k:=k-1
  if binomial(#a,n)~=#r then error "error in choose"
  return r
Type: Void

  1. The Main Result
    fricas
    sum(x)==reduce(+,x,0)
    Type: Void
    fricas
    product(x)==reduce(*,x,1)
    Type: Void
    fricas
    -- specify n
    f(i,j) == sum [ product x for x in choose([r[q]::Expression Integer for q in 1..n|q~=j],n-i-1)]
    Type: Void
    fricas
    groupPolyCoeff(i) == (-1)^(i+n+1)*reduce(+,[exp(r[j])/reduce(*,[r[j]-r[m] for m in 1..n | j~=m])*f(i,j) for j in 1..n])
    Type: Void
  2. Polynomial of degree 2
    fricas
    n:=2
    
\label{eq1}2(1)
    Type: PositiveInteger?
    fricas
    eq2_1:= m[X]=(x-r[1])*(x-r[2])
    
\label{eq2}{m_{X}}={{{x}^{2}}+{{\left(-{r_{2}}-{r_{1}}\right)}\  x}+{{r_{1}}\ {r_{2}}}}(2)
    Type: Equation(Polynomial(Integer))
    fricas
    eq2_2:= exp(X)=g[0]*id+g[1]*X
    
\label{eq3}{{e}^{X}}={{{g_{0}}\  id}+{{g_{1}}\  X}}(3)
    Type: Equation(Expression(Integer))
    fricas
    eq2_3a:= g[0]=groupPolyCoeff(0)
    fricas
    Compiling function choose with type (List(Expression(Integer)),
          Integer) -> List(List(Expression(Integer)))
    fricas
    Compiling function product with type List(Expression(Integer)) -> 
          Expression(Integer)
    fricas
    Compiling function sum with type List(Expression(Integer)) -> 
          Expression(Integer)
    fricas
    Compiling function f with type (NonNegativeInteger,PositiveInteger)
           -> Expression(Integer)
    fricas
    Compiling function groupPolyCoeff with type NonNegativeInteger -> 
          Expression(Integer)
    
\label{eq4}{g_{0}}={{-{{r_{1}}\ {{e}^{r_{2}}}}+{{r_{2}}\ {{e}^{r_{1}}}}}\over{{r_{2}}-{r_{1}}}}(4)
    Type: Equation(Expression(Integer))
    fricas
    eq2_3b:= g[1]=groupPolyCoeff(1)
    fricas
    Compiling function f with type (PositiveInteger,PositiveInteger) -> 
          Expression(Integer)
    fricas
    Compiling function groupPolyCoeff with type PositiveInteger -> 
          Expression(Integer)
    
\label{eq5}{g_{1}}={{{{e}^{r_{2}}}-{{e}^{r_{1}}}}\over{{r_{2}}-{r_{1}}}}(5)
    Type: Equation(Expression(Integer))

    Example 2.1

    fricas
    eval(eq2_1,[r[2]=-r[1]])
    
\label{eq6}{m_{X}}={{{x}^{2}}-{{r_{1}}^{2}}}(6)
    Type: Equation(Polynomial(Integer))
    fricas
    eq2_4:= eval(eval(eq2_2,[eq2_3a,eq2_3b]),r[2]=-r[1])
    
\label{eq7}{{e}^{X}}={{{{\left({{r_{1}}\  id}+ X \right)}\ {{e}^{r_{1}}}}+{{\left({{r_{1}}\  id}- X \right)}\ {{e}^{-{r_{1}}}}}}\over{2 \ {r_{1}}}}(7)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq8}{{X \ {\sinh \left({r_{1}}\right)}}+{{r_{1}}\  id \ {\cosh \left({r_{1}}\right)}}}\over{r_{1}}(8)
    Type: Expression(Integer)

  3. Polynomial of degree 3
    fricas
    n:=3
    
\label{eq9}3(9)
    Type: PositiveInteger?
    fricas
    eq3_1:= m[X]=(x-r[1])*(x-r[2])*(x-r[3])
    
\label{eq10}\begin{array}{@{}l}
\displaystyle
{m_{X}}={
\begin{array}{@{}l}
\displaystyle
{{x}^{3}}+{{\left(-{r_{3}}-{r_{2}}-{r_{1}}\right)}\ {{x}^{2}}}+{{\left({{\left({r_{2}}+{r_{1}}\right)}\ {r_{3}}}+{{r_{1}}\ {r_{2}}}\right)}\  x}- 
\
\
\displaystyle
{{r_{1}}\ {r_{2}}\ {r_{3}}}
(10)
    Type: Equation(Polynomial(Integer))
    fricas
    eq3_2:= exp(X)=g[0]*id+g[1]*X+g[2]*X^2
    
\label{eq11}{{e}^{X}}={{{g_{0}}\  id}+{{g_{2}}\ {{X}^{2}}}+{{g_{1}}\  X}}(11)
    Type: Equation(Expression(Integer))
    fricas
    eq3_3a:= g[0]=groupPolyCoeff(0)
    
\label{eq12}\begin{array}{@{}l}
\displaystyle
{g_{0}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({{r_{1}}\ {{r_{2}}^{2}}}-{{{r_{1}}^{2}}\ {r_{2}}}\right)}\ {{e}^{r_{3}}}}+ 
\
\
\displaystyle
{{\left(-{{r_{1}}\ {{r_{3}}^{2}}}+{{{r_{1}}^{2}}\ {r_{3}}}\right)}\ {{e}^{r_{2}}}}+ 
\
\
\displaystyle
{{\left({{r_{2}}\ {{r_{3}}^{2}}}-{{{r_{2}}^{2}}\ {r_{3}}}\right)}\ {{e}^{r_{1}}}}
(12)
    Type: Equation(Expression(Integer))
    fricas
    eq3_3b:= g[1]=groupPolyCoeff(1)
    
\label{eq13}{g_{1}}={{{{\left(-{{r_{2}}^{2}}+{{r_{1}}^{2}}\right)}\ {{e}^{r_{3}}}}+{{\left({{r_{3}}^{2}}-{{r_{1}}^{2}}\right)}\ {{e}^{r_{2}}}}+{{\left(-{{r_{3}}^{2}}+{{r_{2}}^{2}}\right)}\ {{e}^{r_{1}}}}}\over{{{\left({r_{2}}-{r_{1}}\right)}\ {{r_{3}}^{2}}}+{{\left(-{{r_{2}}^{2}}+{{r_{1}}^{2}}\right)}\ {r_{3}}}+{{r_{1}}\ {{r_{2}}^{2}}}-{{{r_{1}}^{2}}\ {r_{2}}}}}(13)
    Type: Equation(Expression(Integer))
    fricas
    eq3_3c:= g[2]=groupPolyCoeff(2)
    
\label{eq14}{g_{2}}={{{{\left({r_{2}}-{r_{1}}\right)}\ {{e}^{r_{3}}}}+{{\left(-{r_{3}}+{r_{1}}\right)}\ {{e}^{r_{2}}}}+{{\left({r_{3}}-{r_{2}}\right)}\ {{e}^{r_{1}}}}}\over{{{\left({r_{2}}-{r_{1}}\right)}\ {{r_{3}}^{2}}}+{{\left(-{{r_{2}}^{2}}+{{r_{1}}^{2}}\right)}\ {r_{3}}}+{{r_{1}}\ {{r_{2}}^{2}}}-{{{r_{1}}^{2}}\ {r_{2}}}}}(14)
    Type: Equation(Expression(Integer))

    Example 3.1

    fricas
    eval(eq3_1,[r[2]=-r[1],r[3]=0])
    
\label{eq15}{m_{X}}={{{x}^{3}}-{{{r_{1}}^{2}}\  x}}(15)
    Type: Equation(Polynomial(Integer))
    fricas
    eq3_4:= eval(eval(eq3_2,[eq3_3a,eq3_3b,eq3_3c]),[r[2]=-r[1],r[3]=0])
    
\label{eq16}{{e}^{X}}={{{{\left({{X}^{2}}+{{r_{1}}\  X}\right)}\ {{e}^{r_{1}}}}+{{\left({{X}^{2}}-{{r_{1}}\  X}\right)}\ {{e}^{-{r_{1}}}}}+{2 \ {{r_{1}}^{2}}\  id}-{2 \ {{X}^{2}}}}\over{2 \ {{r_{1}}^{2}}}}(16)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq17}{{{r_{1}}\  X \ {\sinh \left({r_{1}}\right)}}+{{{X}^{2}}\ {\cosh \left({r_{1}}\right)}}+{{{r_{1}}^{2}}\  id}-{{X}^{2}}}\over{{r_{1}}^{2}}(17)
    Type: Expression(Integer)

  4. Polynomial of degree 4
    fricas
    n:=4
    
\label{eq18}4(18)
    Type: PositiveInteger?
    fricas
    eq4_1:= m[X]=(x-r[1])*(x-r[2])*(x-r[3])*(x-r[4])
    
\label{eq19}\begin{array}{@{}l}
\displaystyle
{m_{X}}={
\begin{array}{@{}l}
\displaystyle
{{x}^{4}}+{{\left(-{r_{4}}-{r_{3}}-{r_{2}}-{r_{1}}\right)}\ {{x}^{3}}}+ 
\
\
\displaystyle
{{\left({{\left({r_{3}}+{r_{2}}+{r_{1}}\right)}\ {r_{4}}}+{{\left({r_{2}}+{r_{1}}\right)}\ {r_{3}}}+{{r_{1}}\ {r_{2}}}\right)}\ {{x}^{2}}}+ 
\
\
\displaystyle
{{\left({{\left({{\left(-{r_{2}}-{r_{1}}\right)}\ {r_{3}}}-{{r_{1}}\ {r_{2}}}\right)}\ {r_{4}}}-{{r_{1}}\ {r_{2}}\ {r_{3}}}\right)}\  x}+ 
\
\
\displaystyle
{{r_{1}}\ {r_{2}}\ {r_{3}}\ {r_{4}}}
(19)
    Type: Equation(Polynomial(Integer))
    fricas
    eq4_2:= g[0]=groupPolyCoeff(0)
    
\label{eq20}\begin{array}{@{}l}
\displaystyle
{g_{0}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left(-{{r_{1}}\ {{r_{2}}^{2}}}+{{{r_{1}}^{2}}\ {r_{2}}}\right)}\ {{r_{3}}^{3}}}+ 
\
\
\displaystyle
{{\left({{r_{1}}\ {{r_{2}}^{3}}}-{{{r_{1}}^{3}}\ {r_{2}}}\right)}\ {{r_{3}}^{2}}}+ 
\
\
\displaystyle
{{\left(-{{{r_{1}}^{2}}\ {{r_{2}}^{3}}}+{{{r_{1}}^{3}}\ {{r_{2}}^{2}}}\right)}\ {r_{3}}}
(20)
    Type: Equation(Expression(Integer))
    fricas
    eq4_3:= g[1]=groupPolyCoeff(1)
    
\label{eq21}\begin{array}{@{}l}
\displaystyle
{g_{1}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left({{r_{2}}^{2}}-{{r_{1}}^{2}}\right)}\ {{r_{3}}^{3}}}+ \
\
\displaystyle
{{\left(-{{r_{2}}^{3}}+{{r_{1}}^{3}}\right)}\ {{r_{3}}^{2}}}+{{{r_{1}}^{2}}\ {{r_{2}}^{3}}}- 
\
\
\displaystyle
{{{r_{1}}^{3}}\ {{r_{2}}^{2}}}
(21)
    Type: Equation(Expression(Integer))
    fricas
    eq4_4:= g[2]=groupPolyCoeff(2)
    
\label{eq22}\begin{array}{@{}l}
\displaystyle
{g_{2}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left(-{r_{2}}+{r_{1}}\right)}\ {{r_{3}}^{3}}}+{{\left({{r_{2}}^{3}}-{{r_{1}}^{3}}\right)}\ {r_{3}}}- 
\
\
\displaystyle
{{r_{1}}\ {{r_{2}}^{3}}}+{{{r_{1}}^{3}}\ {r_{2}}}
(22)
    Type: Equation(Expression(Integer))
    fricas
    eq4_5:= g[3]=groupPolyCoeff(3)
    
\label{eq23}\begin{array}{@{}l}
\displaystyle
{g_{3}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left({r_{2}}-{r_{1}}\right)}\ {{r_{3}}^{2}}}+{{\left(-{{r_{2}}^{2}}+{{r_{1}}^{2}}\right)}\ {r_{3}}}+ 
\
\
\displaystyle
{{r_{1}}\ {{r_{2}}^{2}}}-{{{r_{1}}^{2}}\ {r_{2}}}
(23)
    Type: Equation(Expression(Integer))
  5. m_X(x) \equiv (x^2-r_1^2)\ (x^2-r_2^2)
    fricas
    eq5_1:=eval(eq4_1,[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq24}{m_{X}}={{{x}^{4}}+{{\left(-{{r_{2}}^{2}}-{{r_{1}}^{2}}\right)}\ {{x}^{2}}}+{{{r_{1}}^{2}}\ {{r_{2}}^{2}}}}(24)
    Type: Equation(Polynomial(Integer))
    fricas
    eq5_2:= exp(X)=g[0]*id+g[1]*X+g[2]*X^2+g[3]*X^3
    
\label{eq25}{{e}^{X}}={{{g_{0}}\  id}+{{g_{3}}\ {{X}^{3}}}+{{g_{2}}\ {{X}^{2}}}+{{g_{1}}\  X}}(25)
    Type: Equation(Expression(Integer))
    fricas
    eq5_3a:= eval(eq4_2,[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq26}{g_{0}}={{-{{{r_{1}}^{2}}\ {{e}^{r_{2}}}}+{{{r_{2}}^{2}}\ {{e}^{r_{1}}}}+{{{r_{2}}^{2}}\ {{e}^{-{r_{1}}}}}-{{{r_{1}}^{2}}\ {{e}^{-{r_{2}}}}}}\over{{2 \ {{r_{2}}^{2}}}-{2 \ {{r_{1}}^{2}}}}}(26)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq27}{-{{{r_{1}}^{2}}\ {\cosh \left({r_{2}}\right)}}+{{{r_{2}}^{2}}\ {\cosh \left({r_{1}}\right)}}}\over{{{r_{2}}^{2}}-{{r_{1}}^{2}}}(27)
    Type: Expression(Integer)
    fricas
    eq5_3b:= eval(eq4_3,[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq28}{g_{1}}={{-{{{r_{1}}^{3}}\ {{e}^{r_{2}}}}+{{{r_{2}}^{3}}\ {{e}^{r_{1}}}}-{{{r_{2}}^{3}}\ {{e}^{-{r_{1}}}}}+{{{r_{1}}^{3}}\ {{e}^{-{r_{2}}}}}}\over{{2 \ {r_{1}}\ {{r_{2}}^{3}}}-{2 \ {{r_{1}}^{3}}\ {r_{2}}}}}(28)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq29}{-{{{r_{1}}^{3}}\ {\sinh \left({r_{2}}\right)}}+{{{r_{2}}^{3}}\ {\sinh \left({r_{1}}\right)}}}\over{{{r_{1}}\ {{r_{2}}^{3}}}-{{{r_{1}}^{3}}\ {r_{2}}}}(29)
    Type: Expression(Integer)
    fricas
    eq5_3c:= eval(eq4_4,[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq30}{g_{2}}={{{{e}^{r_{2}}}-{{e}^{r_{1}}}-{{e}^{-{r_{1}}}}+{{e}^{-{r_{2}}}}}\over{{2 \ {{r_{2}}^{2}}}-{2 \ {{r_{1}}^{2}}}}}(30)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq31}{{\cosh \left({r_{2}}\right)}-{\cosh \left({r_{1}}\right)}}\over{{{r_{2}}^{2}}-{{r_{1}}^{2}}}(31)
    Type: Expression(Integer)
    fricas
    eq5_3d:= eval(eq4_5,[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq32}{g_{3}}={{{{r_{1}}\ {{e}^{r_{2}}}}-{{r_{2}}\ {{e}^{r_{1}}}}+{{r_{2}}\ {{e}^{-{r_{1}}}}}-{{r_{1}}\ {{e}^{-{r_{2}}}}}}\over{{2 \ {r_{1}}\ {{r_{2}}^{3}}}-{2 \ {{r_{1}}^{3}}\ {r_{2}}}}}(32)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq33}{{{r_{1}}\ {\sinh \left({r_{2}}\right)}}-{{r_{2}}\ {\sinh \left({r_{1}}\right)}}}\over{{{r_{1}}\ {{r_{2}}^{3}}}-{{{r_{1}}^{3}}\ {r_{2}}}}(33)
    Type: Expression(Integer)
    fricas
    eq5_4:= eval(eval(eq5_2,[eq4_2,eq4_3,eq4_4,eq4_5]),[r[3]=-r[1],r[4]=-r[2]])
    
\label{eq34}\begin{array}{@{}l}
\displaystyle
{{e}^{X}}={{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{{{r_{1}}^{3}}\ {r_{2}}\  id}+{{r_{1}}\ {{X}^{3}}}+{{r_{1}}\ {r_{2}}\ {{X}^{2}}}- 
\
\
\displaystyle
{{{r_{1}}^{3}}\  X}
(34)
    Type: Equation(Expression(Integer))
    fricas
    htrigs rhs %
    
\label{eq35}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({{r_{1}}\ {{X}^{3}}}-{{{r_{1}}^{3}}\  X}\right)}\ {\sinh \left({r_{2}}\right)}}+ 
\
\
\displaystyle
{{\left(-{{r_{2}}\ {{X}^{3}}}+{{{r_{2}}^{3}}\  X}\right)}\ {\sinh \left({r_{1}}\right)}}+ 
\
\
\displaystyle
{{\left(-{{{r_{1}}^{3}}\ {r_{2}}\  id}+{{r_{1}}\ {r_{2}}\ {{X}^{2}}}\right)}\ {\cosh \left({r_{2}}\right)}}+ 
\
\
\displaystyle
{{\left({{r_{1}}\ {{r_{2}}^{3}}\  id}-{{r_{1}}\ {r_{2}}\ {{X}^{2}}}\right)}\ {\cosh \left({r_{1}}\right)}}
(35)
    Type: Expression(Integer)