login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

fricas
(1) -> integrate(x, x)

\label{eq1}{\frac{1}{2}}\ {{x}^{2}}(1)
Type: Polynomial(Fraction(Integer))

fricas
solve(tan(x)+cos(x)/5-1=0,x)

\label{eq2}\begin{array}{@{}l}
\displaystyle
\left[{x ={2 \ {\arctan \left({\%x 0}\right)}}}, \:{x ={2 \ {\arctan \left({\%x 1}\right)}}}, \: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
x ={2 \ {\arctan{\left({\frac{{\sqrt{-{{27}\ {{\%x 1}^{2}}}+{{\left(-{{18}\  \%x 0}-{30}\right)}\  \%x 1}-{{27}\ {{\%x 0}^{2}}}-{{3
0}\  \%x 0}+{37}}}-{3 \  \%x 1}-{3 \  \%x 0}- 5}{6}}\right)}}}
(2)
Type: List(Equation(Expression(Integer)))

fricas
integrate(1/(a+x^2),x)

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\frac{\log \left({\frac{{{\left({{x}^{2}}- a \right)}\ {\sqrt{- a}}}+{2 \  a \  x}}{{{x}^{2}}+ a}}\right)}{2 \ {\sqrt{- a}}}}, \: \right.
\
\
\displaystyle
\left.{\frac{\arctan \left({\frac{x \ {\sqrt{a}}}{a}}\right)}{\sqrt{a}}}\right] (3)
Type: Union(List(Expression(Integer)),...)




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: