login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxExpOfEnd revision 2 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Editor: Bill Page
Time: 2014/09/19 06:38:43 GMT+0
Note:

added:
\begin{axiom}
choose(a,n) ==
  j:=[i for i in 1..n]
  r:=[[a(j(i)) for i in 1..n]]
  k:=n
  while k>0 and j(k)+n-k<#a repeat
    j(k):=j(k)+1
    for i in k..n-1 repeat j(i+1):=j(i)+1
    r:=concat(r,[a(j(i)) for i in 1..n])
    k:=n; while j(k)+n-k>=#a and k>1 repeat k:=k-1
  if binomial(#a,n)~=#r then error "error in choose"
  return r
\end{axiom}

\begin{axiom}
f(i,j)==reduce(+,map((x:List Expression Integer):Expression Integer +-> reduce(*,x,1),choose([r[q] for q in 1..n|q~=j],n-i-1)))
n:=2
f(0,1)
f(0,2)
f(1,1)
f(1,2)
n:=3
f(0,1)
f(0,2)
f(0,3)
f(1,1)
f(1,2)
f(1,3)
f(2,1)
f(2,2)
f(2,3)
reduce(+,[exp(r[j])/reduce(*,[r[j]-r[m] for m in 1..3 | j~=m]) for j in 1..3])
\end{axiom}

removed:
-1

fricas
choose(a,n) ==
  j:=[i for i in 1..n]
  r:=[[a(j(i)) for i in 1..n]]
  k:=n
  while k>0 and j(k)+n-k<#a repeat
    j(k):=j(k)+1
    for i in k..n-1 repeat j(i+1):=j(i)+1
    r:=concat(r,[a(j(i)) for i in 1..n])
    k:=n; while j(k)+n-k>=#a and k>1 repeat k:=k-1
  if binomial(#a,n)~=#r then error "error in choose"
  return r
Type: Void

fricas
f(i,j)==reduce(+,map((x:List Expression Integer):Expression Integer +-> reduce(*,x,1),choose([r[q] for q in 1..n|q~=j],n-i-1)))
Type: Void
fricas
n:=2

\label{eq1}2(1)
Type: PositiveInteger?
fricas
f(0,1)
fricas
Compiling function choose with type (List(Symbol),Integer) -> List(
      List(Symbol))
fricas
Compiling function f with type (NonNegativeInteger,PositiveInteger)
       -> Expression(Integer)

\label{eq2}r_{2}(2)
Type: Expression(Integer)
fricas
f(0,2)

\label{eq3}r_{1}(3)
Type: Expression(Integer)
fricas
f(1,1)
fricas
Compiling function f with type (PositiveInteger,PositiveInteger) -> 
      Expression(Integer)

\label{eq4}1(4)
Type: Expression(Integer)
fricas
f(1,2)

\label{eq5}1(5)
Type: Expression(Integer)
fricas
n:=3

\label{eq6}3(6)
Type: PositiveInteger?
fricas
f(0,1)

\label{eq7}{r_{2}}\ {r_{3}}(7)
Type: Expression(Integer)
fricas
f(0,2)

\label{eq8}{r_{1}}\ {r_{3}}(8)
Type: Expression(Integer)
fricas
f(0,3)

\label{eq9}{r_{1}}\ {r_{2}}(9)
Type: Expression(Integer)
fricas
f(1,1)

\label{eq10}{r_{3}}+{r_{2}}(10)
Type: Expression(Integer)
fricas
f(1,2)

\label{eq11}{r_{3}}+{r_{1}}(11)
Type: Expression(Integer)
fricas
f(1,3)

\label{eq12}{r_{2}}+{r_{1}}(12)
Type: Expression(Integer)
fricas
f(2,1)

\label{eq13}1(13)
Type: Expression(Integer)
fricas
f(2,2)

\label{eq14}1(14)
Type: Expression(Integer)
fricas
f(2,3)

\label{eq15}1(15)
Type: Expression(Integer)
fricas
reduce(+,[exp(r[j])/reduce(*,[r[j]-r[m] for m in 1..3 | j~=m]) for j in 1..3])

\label{eq16}{{{\left({r_{2}}-{r_{1}}\right)}\ {{e}^{r_{3}}}}+{{\left(-{r_{3}}+{r_{1}}\right)}\ {{e}^{r_{2}}}}+{{\left({r_{3}}-{r_{2}}\right)}\ {{e}^{r_{1}}}}}\over{{{\left({r_{2}}-{r_{1}}\right)}\ {{r_{3}}^{2}}}+{{\left(-{{r_{2}}^{2}}+{{r_{1}}^{2}}\right)}\ {r_{3}}}+{{r_{1}}\ {{r_{2}}^{2}}}-{{{r_{1}}^{2}}\ {r_{2}}}}(16)
Type: Expression(Integer)

one

fricas
eq42 := _
  -r2*r3*r4*exp(r1)/((r1-r2)*(r1-r3)*(r1-r4)) + _
  -r1*r3*r4*exp(r2)/((r2-r1)*(r2-r3)*(r2-r4)) + _
  -r1*r2*r4*exp(r3)/((r3-r1)*(r3-r2)*(r3-r4)) + _
  -r1*r2*r3*exp(r4)/((r4-r1)*(r4-r2)*(r4-r3))

\label{eq17}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left(-{r 1 \ {{r 2}^{2}}}+{{{r 1}^{2}}\  r 2}\right)}\ {{r 3}^{3}}}+ 
\
\
\displaystyle
{{\left({r 1 \ {{r 2}^{3}}}-{{{r 1}^{3}}\  r 2}\right)}\ {{r 3}^{2}}}+ 
\
\
\displaystyle
{{\left(-{{{r 1}^{2}}\ {{r 2}^{3}}}+{{{r 1}^{3}}\ {{r 2}^{2}}}\right)}\  r 3}
(17)
Type: Expression(Integer)

three

fricas
htrigs eval(eq42, [r3=-r1,r4=-r2])

\label{eq18}{-{{{r 1}^{2}}\ {\cosh \left({r 2}\right)}}+{{{r 2}^{2}}\ {\cosh \left({r 1}\right)}}}\over{{{r 2}^{2}}-{{r 1}^{2}}}(18)
Type: Expression(Integer)
fricas
htrigs limit(%,r2=r1)

\label{eq19}{-{r 1 \ {\sinh \left({r 1}\right)}}+{2 \ {\cosh \left({r 1}\right)}}}\over 2(19)
Type: Expression(Integer)

fricas
eq43 :=
  (r2*r3 + r3*r4 + r4*r2)*exp(r1)/((r1-r2)*(r1-r3)*(r1-r4)) + _
  (r1*r3 + r3*r4 + r4*r1)*exp(r2)/((r2-r1)*(r2-r3)*(r2-r4)) + _
  (r1*r2 + r2*r4 + r4*r1)*exp(r3)/((r3-r1)*(r3-r2)*(r3-r4)) + _
  (r1*r2 + r2*r3 + r3*r1)*exp(r4)/((r4-r1)*(r4-r2)*(r4-r3))

\label{eq20}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
{{\left({{r 2}^{2}}-{{r 1}^{2}}\right)}\ {{r 3}^{3}}}+{{\left(-{{r 2}^{3}}+{{r 1}^{3}}\right)}\ {{r 3}^{2}}}+ 
\
\
\displaystyle
{{{r 1}^{2}}\ {{r 2}^{3}}}-{{{r 1}^{3}}\ {{r 2}^{2}}}
(20)
Type: Expression(Integer)

fricas
htrigs eval(eq43, [r3=-r1,r4=-r2])

\label{eq21}{-{{{r 1}^{3}}\ {\sinh \left({r 2}\right)}}+{{{r 2}^{3}}\ {\sinh \left({r 1}\right)}}}\over{{r 1 \ {{r 2}^{3}}}-{{{r 1}^{3}}\  r 2}}(21)
Type: Expression(Integer)
fricas
htrigs limit(%,r2=r1)

\label{eq22}{{3 \ {\sinh \left({r 1}\right)}}-{r 1 \ {\cosh \left({r 1}\right)}}}\over{2 \  r 1}(22)
Type: Expression(Integer)