|
|
last edited 6 years ago by test1 |
1 2 3 4 5 6 7 8 | ||
Editor: page
Time: 2011/03/10 19:17:38 GMT-8 |
||
Note: VectorSpace |
added:
Add::
if R has Field then
VectorSpace(R)
\begin{spad}
)abbrev category FMCAT FreeModuleCategory
++ Author: Michel Petitot petitot@lifl.fr
++ Date Created: 91
++ Date Last Updated: 7 Juillet 92
++ Fix History: compilation v 2.1 le 13 dec 98
++ Basic Functions:
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A domain of this category
++ implements formal linear combinations
++ of elements from a domain \spad{Basis} with coefficients
++ in a domain \spad{R}. The domain \spad{Basis} needs only
++ to belong to the category \spadtype{SetCategory} and \spad{R}
++ to the category \spadtype{Ring}. Thus the coefficient ring
++ may be non-commutative.
++ See the \spadtype{XDistributedPolynomial} constructor
++ for examples of domains built with the \spadtype{FreeModuleCategory}
++ category constructor.
++ Author: Michel Petitot (petitot@lifl.fr)
++
++ Note (Franz Lehner, June 2009):
++ Since \spad{leadingTerm} makes no sense
++ for unordered base sets,
++ and at the time of this writing this domain was never used for such,
++ it was changed to \spad{OrderedSet}.
++ \spad{FreeModule} originally was not of FreeModuleCategory.
++ Some functions (like \spad{support}, \spad{coefficients},
++ \spad{monomials}, ...) from here could be moved to
++ \spad{IndexedDirectProductCategory}
++ but at the moment there is no need for this.
FreeModuleCategory(R, S):Category == Exports where
R: Ring
S: OrderedSet
Term ==> Record(k: S, c: R)
Exports == Join(BiModule(R,R), RetractableTo S, IndexedDirectProductCategory(R,S)) with
"*" : (R, S) -> %
++ \spad{r*b} returns the product of \spad{r} by \spad{b}.
"*":(S,R) -> %
++ \spad{s*r} returns the product \spad{r*s}
++ used by \spadtype{XRecursivePolynomial}
coefficients : % -> List R
++ \spad{coefficients(x)} returns the list of coefficients of \spad{x}.
support : % -> List S
++ \spad{support(x)} returns the list of basis elements with nonzero coefficients.
monomials : % -> List %
++ \spad{monomials(x)} returns the list of \spad{r_i*b_i}
++ whose sum is \spad{x}.
numberOfMonomials : % -> NonNegativeInteger
++ \spad{numberOfMonomials(x)} returns the number of monomials of \spad{x}.
monomial?: % -> Boolean
++ \spad{monomial?(x)} returns true if \spad{x} contains a single
++ monomial.
leadingMonomial : % -> S
++ \spad{leadingMonomial(x)} returns the first element from \spad{S}
++ which appears in \spad{listOfTerms(x)}.
leadingCoefficient : % -> R
++ \spad{leadingCoefficient(x)} returns the first coefficient
++ which appears in \spad{listOfTerms(x)}.
monom : (S, R) -> %
++ \spad{monom(s,r)} returns the product of the basis element \spad{s} by the coefficient \spad{r}.
coefficient :(%,S) -> R
++ \spad{coefficient(x,s)} returns the coefficient of the basis element s
-- attributes
if R has Field then
VectorSpace(R)
if R has CommutativeRing then
Module(R)
linearExtend:(S->R,%)->R
++ \spad{linearExtend:(f,x)} returns the linear extension
++ of a map defined on the basis applied to a linear combination
if R has Comparable then Comparable
add
if R has Comparable then
smaller?(p:%,q:%):Boolean ==
if leadingMonomial(p)=leadingMonomial(q) then
if leadingCoefficient(p)=leadingCoefficient(q) then
smaller?(reductum p, reductum q)
else
smaller?(leadingCoefficient(p),leadingCoefficient(q))
leadingMonomial(p)<leadingMonomial(q)
\end{spad}
\begin{spad}
)abbrev domain FM FreeModule
++ Author: Dave Barton, James Davenport, Barry Trager
++ Date Created:
++ Date Last Updated:
++ Basic Functions: BiModule(R,R)
++ Related Constructors:
++ Also See:
++ AMS Classifications:
++ Keywords:
++ References:
++ Description:
++ A bi-module is a free module
++ over a ring with generators indexed by an ordered set.
++ Each element can be expressed as a finite linear combination of
++ generators. Only non-zero terms are stored.
++ old domain FreeModule1 was merged to it in May 2009
++ The description of the latter:
++ This domain implements linear combinations
++ of elements from the domain \spad{S} with coefficients
++ in the domain \spad{R} where \spad{S} is an ordered set
++ and \spad{R} is a ring (which may be non-commutative).
++ This domain is used by domains of non-commutative algebra such as:
++ \spadtype{XDistributedPolynomial},
++ \spadtype{XRecursivePolynomial}.
++ Author: Michel Petitot (petitot@lifl.fr)
FreeModule(R:Ring,S:OrderedSet):
Join(BiModule(R,R),FreeModuleCategory(R,S)) with
if R has CommutativeRing then Module(R)
== IndexedDirectProductAbelianGroup(R,S) add
--representations
Term ==> Record(k:S,c:R)
Rep := List Term
--declarations
x,y: %
r: R
n: Integer
f: R -> R
s: S
lt: List Term
--define
if R has EntireRing then
r * x ==
zero? r => 0
-- one? r => x
(r = 1) => x
--map(x+->r*x1,x)
[[u.k,r*u.c] for u in x ]
else
r * x ==
zero? r => 0
-- one? r => x
(r = 1) => x
--map(x1+->r*x1,x)
[[u.k,a] for u in x | (a:=r*u.c) ~= 0$R]
if R has EntireRing then
x * r ==
zero? r => 0
-- one? r => x
(r = 1) => x
--map(x1+->r*x1,x)
[[u.k,u.c*r] for u in x ]
else
x * r ==
zero? r => 0
-- one? r => x
(r = 1) => x
--map(x1+->r*x1,x)
[[u.k,a] for u in x | (a:=u.c*r) ~= 0$R]
r * s ==
r = 0 => 0
[[s,r]$Term]
s * r ==
r = 0 => 0
[[s,r]$Term]
coerce(x) : OutputForm ==
null x => (0$R) :: OutputForm
le : List OutputForm := nil
for rec in reverse x repeat
rec.c = 1 => le := cons(rec.k :: OutputForm, le)
le := cons(rec.c :: OutputForm * rec.k :: OutputForm, le)
reduce("+",le)
leadingMonomial x == x.first.k
support x == [t.k for t in x]
coefficients x == [t.c for t in x]
monomials x == [ monom (t.k, t.c) for t in x]
retractIfCan x ==
numberOfMonomials(x) ~= 1 => "failed"
x.first.c = 1 => x.first.k
"failed"
retract x ==
(rr := retractIfCan x) case "failed" => error "FM1.retract impossible"
rr :: S
coerce(s:S):% == [[s,1$R]]
-- the following is to be replaced by monomial(r,b) everywhere
monom(b,r):% == [[b,r]$Term]
coefficient(x,s) ==
null x => 0$R
x.first.k > s => coefficient(rest x,s)
x.first.k = s => x.first.c
0$R
monomial? x ==
numberOfMonomials x = 1
listOfTerms(x) ==
-- (x::Rep)
-- coerce(x)@Rep
x pretend Rep
numberOfMonomials x == # (listOfTerms x)
if R has CommutativeRing then
f:S->R
x:%
t:Term
linearExtend(f,x) ==
zero? x => 0
res:R:= 0
for t in listOfTerms x repeat
res := res + (t c)*f(t k)
res
\end{spad}
\begin{axiom}
FreeModule(Fraction Integer,OrderedVariableList [e1,e1]) has VectorSpace(Fraction Integer)
\end{axiom}
A bi-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.
This domain implements linear combinations of elements from the domain S with coefficients in the domain R where S is an ordered set and R is a ring (which may be non-commutative).
Ref: http://en.wikipedia.org/wiki/Free_module
)sh FreeModule
FreeModule(R: Ring,S: OrderedSet) is a domain constructor Abbreviation for FreeModule is FM This constructor is not exposed in this frame. ------------------------------- Operations -------------------------------- ?*? : (R, S) -> % ?*? : (S, R) -> % ?*? : (%, R) -> % ?*? : (R, %) -> % ?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?=? : (%, %) -> Boolean 0 : () -> % coefficient : (%, S) -> R coefficients : % -> List(R) coerce : S -> % coerce : % -> OutputForm hash : % -> SingleInteger latex : % -> String leadingCoefficient : % -> R leadingMonomial : % -> S leadingSupport : % -> S map : ((R -> R), %) -> % monom : (S, R) -> % monomial : (R, S) -> % monomial? : % -> Boolean monomials : % -> List(%) reductum : % -> % retract : % -> S sample : () -> % support : % -> List(S) zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (NonNegativeInteger, %) -> % construct : List(Record(k: S, c: R)) -> % constructOrdered : List(Record(k: S, c: R)) -> % leadingTerm : % -> Record(k: S, c: R) linearExtend : ((S -> R), %) -> R if R has COMRING listOfTerms : % -> List(Record(k: S, c: R)) numberOfMonomials : % -> NonNegativeInteger retractIfCan : % -> Union(S, "failed") subtractIfCan : (%, %) -> Union(%, "failed")
See: [PolySpad]?
FreeModule(Fraction Integer,OrderedVariableList [e1, e1]) has VectorSpace(Fraction Integer)
(1) |
Ref: http://en.wikipedia.org/wiki/Vector_space#Modules
Add:
if R has Field then VectorSpace(R)
)abbrev category FMCAT FreeModuleCategory ++ Author: Michel Petitot petitot@lifl.fr ++ Date Created: 91 ++ Date Last Updated: 7 Juillet 92 ++ Fix History: compilation v 2.1 le 13 dec 98 ++ Basic Functions: ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A domain of this category ++ implements formal linear combinations ++ of elements from a domain \spad{Basis} with coefficients ++ in a domain \spad{R}. The domain \spad{Basis} needs only ++ to belong to the category \spadtype{SetCategory} and \spad{R} ++ to the category \spadtype{Ring}. Thus the coefficient ring ++ may be non-commutative. ++ See the \spadtype{XDistributedPolynomial} constructor ++ for examples of domains built with the \spadtype{FreeModuleCategory} ++ category constructor. ++ Author: Michel Petitot (petitot@lifl.fr) ++ ++ Note (Franz Lehner,June 2009): ++ Since \spad{leadingTerm} makes no sense ++ for unordered base sets, ++ and at the time of this writing this domain was never used for such, ++ it was changed to \spad{OrderedSet}. ++ \spad{FreeModule} originally was not of FreeModuleCategory. ++ Some functions (like \spad{support}, \spad{coefficients}, ++ \spad{monomials}, ...) from here could be moved to ++ \spad{IndexedDirectProductCategory} ++ but at the moment there is no need for this. FreeModuleCategory(R, S):Category == Exports where R: Ring S: OrderedSet Term ==> Record(k: S, c: R)
Exports == Join(BiModule(R,R), RetractableTo S, IndexedDirectProductCategory(R, S)) with "*" : (R, S) -> % ++ \spad{r*b} returns the product of \spad{r} by \spad{b}. "*":(S, R) -> % ++ \spad{s*r} returns the product \spad{r*s} ++ used by \spadtype{XRecursivePolynomial} coefficients : % -> List R ++ \spad{coefficients(x)} returns the list of coefficients of \spad{x}. support : % -> List S ++ \spad{support(x)} returns the list of basis elements with nonzero coefficients. monomials : % -> List % ++ \spad{monomials(x)} returns the list of \spad{r_i*b_i} ++ whose sum is \spad{x}. numberOfMonomials : % -> NonNegativeInteger ++ \spad{numberOfMonomials(x)} returns the number of monomials of \spad{x}. monomial?: % -> Boolean ++ \spad{monomial?(x)} returns true if \spad{x} contains a single ++ monomial. leadingMonomial : % -> S ++ \spad{leadingMonomial(x)} returns the first element from \spad{S} ++ which appears in \spad{listOfTerms(x)}. leadingCoefficient : % -> R ++ \spad{leadingCoefficient(x)} returns the first coefficient ++ which appears in \spad{listOfTerms(x)}. monom : (S, R) -> % ++ \spad{monom(s, r)} returns the product of the basis element \spad{s} by the coefficient \spad{r}. coefficient :(%, S) -> R ++ \spad{coefficient(x, s)} returns the coefficient of the basis element s -- attributes if R has Field then VectorSpace(R) if R has CommutativeRing then Module(R) linearExtend:(S->R, %)->R ++ \spad{linearExtend:(f, x)} returns the linear extension ++ of a map defined on the basis applied to a linear combination if R has Comparable then Comparable add if R has Comparable then smaller?(p:%, q:%):Boolean == if leadingMonomial(p)=leadingMonomial(q) then if leadingCoefficient(p)=leadingCoefficient(q) then smaller?(reductum p, reductum q) else smaller?(leadingCoefficient(p), leadingCoefficient(q)) leadingMonomial(p)<leadingMonomial(q)
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/2183133228744961848-25px003.spad using old system compiler. FMCAT abbreviates category FreeModuleCategory processing macro definition Term ==> Record(k: S,c: R) ------------------------------------------------------------------------ initializing NRLIB FMCAT for FreeModuleCategory compiling into NRLIB FMCAT
;;; *** |FreeModuleCategory| REDEFINED Time: 0.36 SEC.
FMCAT- abbreviates domain FreeModuleCategory& ------------------------------------------------------------------------ initializing NRLIB FMCAT- for FreeModuleCategory& compiling into NRLIB FMCAT- ****** Domain: R already in scope augmenting R: (Comparable) compiling exported smaller? : (A,A) -> Boolean Time: 0.52 SEC.
(time taken in buildFunctor: 0)
;;; *** |FreeModuleCategory&| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor FreeModuleCategory& Time: 0.52 seconds
finalizing NRLIB FMCAT- Processing FreeModuleCategory& for Browser database: --------(* (% R S))--------- --------(* (% S R))--------- --------(coefficients ((List R) %))--------- --------(support ((List S) %))--------- --------(monomials ((List %) %))--------- --------(numberOfMonomials ((NonNegativeInteger) %))--------- --------(monomial? ((Boolean) %))--------- --------(leadingMonomial (S %))--------- --------(leadingCoefficient (R %))--------- --------(monom (% S R))--------- --------(coefficient (R % S))--------- --->-->FreeModuleCategory&((linearExtend (R (Mapping R S) %))): Not documented!!!! --------constructor--------- --------constructor--------- --->-->FreeModuleCategory&(): Spurious comments: \indented{1}{\spad{linearExtend:(f,{}x)} returns the linear extension} of a map defined on the basis applied to a linear combination ; compiling file "/var/zope2/var/LatexWiki/FMCAT-.NRLIB/FMCAT-.lsp" (written 10 MAR 2011 07:16:45 PM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFUN |FMCAT-;smaller?;2AB;1| ...) ; compiling (DEFUN |FreeModuleCategory&| ...) ; compiling (MAKEPROP (QUOTE |FreeModuleCategory&|) ...)
; /var/zope2/var/LatexWiki/FMCAT-.NRLIB/FMCAT-.fasl written ; compilation finished in 0:00:00.306 ------------------------------------------------------------------------ FreeModuleCategory& is now explicitly exposed in frame initial FreeModuleCategory& will be automatically loaded when needed from /var/zope2/var/LatexWiki/FMCAT-.NRLIB/FMCAT- finalizing NRLIB FMCAT Processing FreeModuleCategory for Browser database: --------(* (% R S))--------- --------(* (% S R))--------- --------(coefficients ((List R) %))--------- --------(support ((List S) %))--------- --------(monomials ((List %) %))--------- --------(numberOfMonomials ((NonNegativeInteger) %))--------- --------(monomial? ((Boolean) %))--------- --------(leadingMonomial (S %))--------- --------(leadingCoefficient (R %))--------- --------(monom (% S R))--------- --------(coefficient (R % S))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/FMCAT.spad-->FreeModuleCategory((linearExtend (R (Mapping R S) %))): Not documented!!!! --------constructor--------- --------constructor--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/FMCAT.spad-->FreeModuleCategory(): Spurious comments: \indented{1}{\spad{linearExtend:(f,{}x)} returns the linear extension} of a map defined on the basis applied to a linear combination ; compiling file "/var/zope2/var/LatexWiki/FMCAT.NRLIB/FMCAT.lsp" (written 10 MAR 2011 07:16:44 PM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFPARAMETER |FreeModuleCategory;CAT| ...) ; compiling (DEFPARAMETER |FreeModuleCategory;AL| ...) ; compiling (DEFUN |FreeModuleCategory| ...) ; compiling (DEFUN |FreeModuleCategory;| ...)
; /var/zope2/var/LatexWiki/FMCAT.NRLIB/FMCAT.fasl written ; compilation finished in 0:00:00.100 ------------------------------------------------------------------------ FreeModuleCategory is now explicitly exposed in frame initial FreeModuleCategory will be automatically loaded when needed from /var/zope2/var/LatexWiki/FMCAT.NRLIB/FMCAT
)abbrev domain FM FreeModule ++ Author: Dave Barton,James Davenport, Barry Trager ++ Date Created: ++ Date Last Updated: ++ Basic Functions: BiModule(R, R) ++ Related Constructors: ++ Also See: ++ AMS Classifications: ++ Keywords: ++ References: ++ Description: ++ A bi-module is a free module ++ over a ring with generators indexed by an ordered set. ++ Each element can be expressed as a finite linear combination of ++ generators. Only non-zero terms are stored.
++ old domain FreeModule1 was merged to it in May 2009 ++ The description of the latter: ++ This domain implements linear combinations ++ of elements from the domain \spad{S} with coefficients ++ in the domain \spad{R} where \spad{S} is an ordered set ++ and \spad{R} is a ring (which may be non-commutative). ++ This domain is used by domains of non-commutative algebra such as: ++ \spadtype{XDistributedPolynomial},++ \spadtype{XRecursivePolynomial}. ++ Author: Michel Petitot (petitot@lifl.fr)
FreeModule(R:Ring,S:OrderedSet): Join(BiModule(R, R), FreeModuleCategory(R, S)) with if R has CommutativeRing then Module(R) == IndexedDirectProductAbelianGroup(R, S) add --representations Term ==> Record(k:S, c:R) Rep := List Term --declarations x, y: % r: R n: Integer f: R -> R s: S lt: List Term --define if R has EntireRing then r * x == zero? r => 0 -- one? r => x (r = 1) => x --map(x+->r*x1, x) [[u.k, r*u.c] for u in x ] else r * x == zero? r => 0 -- one? r => x (r = 1) => x --map(x1+->r*x1, x) [[u.k, a] for u in x | (a:=r*u.c) ~= 0$R] if R has EntireRing then x * r == zero? r => 0 -- one? r => x (r = 1) => x --map(x1+->r*x1, x) [[u.k, u.c*r] for u in x ] else x * r == zero? r => 0 -- one? r => x (r = 1) => x --map(x1+->r*x1, x) [[u.k, a] for u in x | (a:=u.c*r) ~= 0$R]
r * s == r = 0 => 0 [[s,r]$Term]
s * r == r = 0 => 0 [[s,r]$Term]
coerce(x) : OutputForm == null x => (0$R) :: OutputForm le : List OutputForm := nil for rec in reverse x repeat rec.c = 1 => le := cons(rec.k :: OutputForm,le) le := cons(rec.c :: OutputForm * rec.k :: OutputForm, le) reduce("+", le)
leadingMonomial x == x.first.k
support x == [t.k for t in x]
coefficients x == [t.c for t in x]
monomials x == [ monom (t.k,t.c) for t in x]
retractIfCan x == numberOfMonomials(x) ~= 1 => "failed" x.first.c = 1 => x.first.k "failed"
retract x == (rr := retractIfCan x) case "failed" => error "FM1.retract impossible" rr :: S
coerce(s:S):% == [[s,1$R]]
-- the following is to be replaced by monomial(r,b) everywhere monom(b, r):% == [[b, r]$Term]
coefficient(x,s) == null x => 0$R x.first.k > s => coefficient(rest x, s) x.first.k = s => x.first.c 0$R
monomial? x == numberOfMonomials x = 1
listOfTerms(x) == -- (x::Rep) -- coerce(x)@Rep x pretend Rep
numberOfMonomials x == # (listOfTerms x)
if R has CommutativeRing then f:S->R x:% t:Term linearExtend(f,x) == zero? x => 0 res:R:= 0 for t in listOfTerms x repeat res := res + (t c)*f(t k) res
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/1868799774806656872-25px004.spad using old system compiler. FM abbreviates domain FreeModule ------------------------------------------------------------------------ initializing NRLIB FM for FreeModule compiling into NRLIB FM processing macro definition Term ==> Record(k: S,c: R) ****** Domain: R already in scope augmenting R: (EntireRing) compiling exported * : (R, $) -> $
;;; *** |FM;*;R2$;1| REDEFINED Time: 0.08 SEC.
compiling exported * : (R,$) -> $
;;; *** |FM;*;R2$;2| REDEFINED Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (EntireRing) compiling exported * : ($,R) -> $
;;; *** |FM;*;$R$;3| REDEFINED Time: 0.01 SEC.
compiling exported * : ($,R) -> $
;;; *** |FM;*;$R$;4| REDEFINED Time: 0.01 SEC.
compiling exported * : (R,S) -> $
;;; *** |FM;*;RS$;5| REDEFINED Time: 0 SEC.
compiling exported * : (S,R) -> $
;;; *** |FM;*;SR$;6| REDEFINED Time: 0.01 SEC.
compiling exported coerce : $ -> OutputForm
;;; *** |FM;coerce;$Of;7| REDEFINED Time: 0.09 SEC.
compiling exported leadingMonomial : $ -> S
;;; *** |FM;leadingMonomial;$S;8| REDEFINED Time: 0 SEC.
compiling exported support : $ -> List S
;;; *** |FM;support;$L;9| REDEFINED Time: 0.01 SEC.
compiling exported coefficients : $ -> List R
;;; *** |FM;coefficients;$L;10| REDEFINED Time: 0.06 SEC.
compiling exported monomials : $ -> List $
;;; *** |FM;monomials;$L;11| REDEFINED Time: 0.01 SEC.
compiling exported retractIfCan : $ -> Union(S,failed)
;;; *** |FM;retractIfCan;$U;12| REDEFINED Time: 0.01 SEC.
compiling exported retract : $ -> S
;;; *** |FM;retract;$S;13| REDEFINED Time: 0 SEC.
compiling exported coerce : S -> $
;;; *** |FM;coerce;S$;14| REDEFINED Time: 0 SEC.
compiling exported monom : (S,R) -> $
;;; *** |FM;monom;SR$;15| REDEFINED Time: 0 SEC.
compiling exported coefficient : ($,S) -> R
;;; *** |FM;coefficient;$SR;16| REDEFINED Time: 0 SEC.
compiling exported monomial? : $ -> Boolean
;;; *** |FM;monomial?;$B;17| REDEFINED Time: 0 SEC.
compiling exported listOfTerms : $ -> List Record(k: S,c: R) FM;listOfTerms;$L;18 is replaced by x
;;; *** |FM;listOfTerms;$L;18| REDEFINED Time: 0 SEC.
compiling exported numberOfMonomials : $ -> NonNegativeInteger
;;; *** |FM;numberOfMonomials;$Nni;19| REDEFINED Time: 0 SEC.
****** Domain: R already in scope augmenting R: (CommutativeRing) compiling exported linearExtend : (S -> R,$) -> R
;;; *** |FM;linearExtend;M$R;20| REDEFINED Time: 0 SEC.
****** Domain: R already in scope augmenting R: (CommutativeRing) ****** Domain: R already in scope augmenting R: (Comparable) ****** Domain: R already in scope augmenting R: (Field) (time taken in buildFunctor: 20)
;;; *** |FreeModule| REDEFINED
;;; *** |FreeModule| REDEFINED Time: 0.03 SEC.
Warnings: [1] listOfTerms: pretendRep -- should replace by @
Cumulative Statistics for Constructor FreeModule Time: 0.33 seconds
finalizing NRLIB FM Processing FreeModule for Browser database: --------constructor--------- ; compiling file "/var/zope2/var/LatexWiki/FM.NRLIB/FM.lsp" (written 10 MAR 2011 07:16:59 PM): ; compiling (/VERSIONCHECK 2) ; compiling (DEFUN |FM;*;R2$;1| ...) ; compiling (DEFUN |FM;*;R2$;2| ...) ; compiling (DEFUN |FM;*;$R$;3| ...) ; compiling (DEFUN |FM;*;$R$;4| ...) ; compiling (DEFUN |FM;*;RS$;5| ...) ; compiling (DEFUN |FM;*;SR$;6| ...) ; compiling (DEFUN |FM;coerce;$Of;7| ...) ; compiling (DEFUN |FM;leadingMonomial;$S;8| ...) ; compiling (DEFUN |FM;support;$L;9| ...) ; compiling (DEFUN |FM;coefficients;$L;10| ...) ; compiling (DEFUN |FM;monomials;$L;11| ...) ; compiling (DEFUN |FM;retractIfCan;$U;12| ...) ; compiling (DEFUN |FM;retract;$S;13| ...) ; compiling (DEFUN |FM;coerce;S$;14| ...) ; compiling (DEFUN |FM;monom;SR$;15| ...) ; compiling (DEFUN |FM;coefficient;$SR;16| ...) ; compiling (DEFUN |FM;monomial?;$B;17| ...) ; compiling (PUT (QUOTE |FM;listOfTerms;$L;18|) ...) ; compiling (DEFUN |FM;listOfTerms;$L;18| ...) ; compiling (DEFUN |FM;numberOfMonomials;$Nni;19| ...) ; compiling (DEFUN |FM;linearExtend;M$R;20| ...) ; compiling (DEFUN |FreeModule| ...) ; compiling (DEFUN |FreeModule;| ...) ; compiling (MAKEPROP (QUOTE |FreeModule|) ...)
; /var/zope2/var/LatexWiki/FM.NRLIB/FM.fasl written ; compilation finished in 0:00:00.810 ------------------------------------------------------------------------ FreeModule is now explicitly exposed in frame initial FreeModule will be automatically loaded when needed from /var/zope2/var/LatexWiki/FM.NRLIB/FM
FreeModule(Fraction Integer,OrderedVariableList [e1, e1]) has VectorSpace(Fraction Integer)
(2) |