login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for CaleyDickson revision 9 of 18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Editor: Bill Page
Time: 2011/04/18 19:51:41 GMT-7
Note: split-octonions and properties

removed:
-        --print(x::OutputForm * y::OutputForm)

added:
    norm(x:%):C == retract(conjugate(x)*x)


changed:
-)set output tex on
-)set output algebra off
-\end{axiom}
R := Expression Integer
\end{axiom}

changed:
-C := CaleyDickson(FRAC INT,'i,1)
C := CaleyDickson(R,'i,1)

removed:
-c:C := scalar [2,3]

changed:
-Cg:ILIST(Complex FRAC INT,0) := construct map(x+-> complex(x.1,x.2),
Cg:ILIST(Complex R,0) := construct map(x+-> complex(x.1,x.2),

changed:
-\end{axiom}
-- normed?
c1:C := scalar [subscript('c1,[i]) for i in 1..2]
c2:C := scalar [subscript('c2,[i]) for i in 1..2]
c3:C := scalar [subscript('c3,[i]) for i in 1..8]
-- Normed?
test(norm(c1*c2)=norm(c1)*norm(c2))
-- Commutative?
test( c1 * c2 = c2 * c1 )
-- Associative?
test((c1 * c2) * c3 = c1 * (c2 * c3))
\end{axiom}

removed:
-q:Q := scalar [2,3,4,5]

changed:
-Qg:ILIST(Quaternion FRAC INT,0) := construct map(x+-> quatern(x.1,x.2,x.3,x.4),
Qg:ILIST(Quaternion R,0) := construct map(x+-> quatern(x.1,x.2,x.3,x.4),

changed:
--- non-commutative
-test( Qe.1 * Qe.2 = - Qe.2 * Qe.1 )
-\end{axiom}
q1:Q := scalar [subscript('q1,[i]) for i in 1..4]
q2:Q := scalar [subscript('q2,[i]) for i in 1..4]
q3:Q := scalar [subscript('q3,[i]) for i in 1..8]
-- Normed?
test( norm(q1*q2) = norm(q1)*norm(q2))
-- Commutative?
test( q1 * q2 = q2 * q1 )
-- Associative?
test((q1 * q2) * q3 = q1 * (q2 * q3))
\end{axiom}

removed:
-o:O := scalar [2,3,4,5,6,7,8,9]

changed:
-Og:ILIST(Octonion FRAC INT,0):=map(x+-> octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),
Og:ILIST(Octonion R,0):=map(x+-> octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),

changed:
--- Non-commutative
-test( Oe.2 * Oe.4 = - Oe.4 * Oe.2 )
--- Non-associative
-test((Oe.2 * Oe.4) * Oe.7 = - Oe.2 * (Oe.4 * Oe.7))
-\end{axiom}
o1:O := scalar [subscript('o1,[i]) for i in 1..8]
o2:O := scalar [subscript('o2,[i]) for i in 1..8]
o3:O := scalar [subscript('o3,[i]) for i in 1..8]
-- normed?
test(norm(o1*o2)=norm(o1)*norm(o2))
-- Commutative?
test( o1 * o2 = o2 * o1 )
-- Associative?
test((o1 * o2) * o3 = o1 * (o2 * o3))
-- Alternative?
test((o1 * o2) * o1 = o1 * (o2 * o1))
\end{axiom}

Split-Octonions

Ref: http://en.wikipedia.org/wiki/Split-octonion

Note: Our table below is not identical the one shown in the reference where a different convention is used to define multiplication.

\begin{axiom}
sO:=CaleyDickson(Q,'ℓ,-1)
rank()$sO
sOe:ILIST(sO,0) := construct entries basis()$sO
matrix [[sOe.i * sOe.j for j in 0..#sOe-1] for i in 0..#sOe-1]
so1:sO := scalar [subscript('so1,[i]) for i in 1..8]
so2:sO := scalar [subscript('so2,[i]) for i in 1..8]
so3:sO := scalar [subscript('so3,[i]) for i in 1..8]
-- Normed?
test(norm(so1*so2)=norm(so1)*norm(so2))
-- Commutative?
test( so1 * so2 = so2 * so1 )
-- Associative?
test((so1 * so2) * so3 = so1 * (so2 * so3))
-- Alternative?
test((so1 * so2) * so1 = - so1 * (so2 * so1))
\end{axiom}

removed:
-s:S := scalar [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]

changed:
--- Non-commutative
-test( Se.3 * Se.10 = - Se.10 * Se.3 )
--- Non-associative
-test( (Se.3 * Se.6) * Se.11 =  -Se.3 * (Se.6 * Se.11) )
s1:S := scalar [subscript('s1,[i]) for i in 1..16]
s2:S := scalar [subscript('s2,[i]) for i in 1..16]
s3:S := scalar [subscript('s3,[i]) for i in 1..16]
-- normed?
test(norm(s1*s2)=norm(s1)*norm(s2))
-- Commutative
test( s1 * s2 = s2 * s1 )
-- Associative?
test( (s1 * s2) * s3 =  s1 * (s2 * s3) )
-- Alternative?
test((s1 * s2) * s1 = - s1 * (s2 * s1))
-- Power Associateive?
test((s1 * s1) * s1 = s1 * (s1 * s1))

Ref:

http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction

"The Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras; since they extend the complex numbers, ... "

complex numbers, quaternions, octonions, sedenions, ...

http://en.wikipedia.org/wiki/Hypercomplex_number

spad
)abbrev domain CALEY CaleyDickson
CaleyDickson(C:CommutativeRing,gen:Symbol,gamma:C):ComplexCategory(C) with
    scalar:List % -> %
  == add
    Rep == DirectProduct(2,C)
    rep(x:%):Rep == x pretend Rep
    per(x:Rep):% == x pretend %
pair(x:C,y:C):Rep == directProduct vector [x,y] complex(x:C,y:C):% == per pair(x,y) real(x:%):C == rep(x).1 imag(x:%):C == rep(x).2
0:% == complex(0,0) zero?(x:%):Boolean == zero? rep(x) 1:% == per pair(1,0) one?(x:%):Boolean == one? real x and zero? imag x
if C has conjugate:C->C then -- In general we need conjugate (x:% * y:%):% == complex(real x * real y - gamma*conjugate imag y * imag x, imag y * real x + imag x * conjugate real y) conjugate(x:%):% == complex(conjugate(real x), -imag x) else -- If not complex then conjugate is identity (x:% * y:%):% == complex(real x * real y - gamma*imag y * imag x, imag y * real x + imag x * real y) conjugate(x:%):% == complex(real x, -imag x)
norm(x:%):C == retract(conjugate(x)*x)
if C has Field then inv(x:%):% == per(inv(real(conjugate x * x))$C * rep conjugate x) (x:% / y:%):% == x * inv(y)
if C has rank:()->PositiveInteger then rank():PositiveInteger == 2*rank()$C else rank():PositiveInteger == 2
if C has basis:()->Vector C then basis():Vector % == concat([complex(i,0) for i in entries basis()$C], [complex(0,i) for i in entries basis()$C]) else basis():Vector % == [1,imaginary()]
if C has scalar:List C -> C then scalar(x:List %):% == h:Integer := divide(#x,2).quotient complex(scalar([retract(x.i)@C for i in 1..h]),scalar([retract(x.i)@C for i in h+1..#x])) else scalar(x:List %):% == complex(retract x.1,retract x.2)
coerce(x:%):OutputForm == outr:=real(x)::OutputForm imag x = 0 => return outr outi := hconcat(imag(x)::OutputForm, gen::OutputForm) if imag x = 1 then outi := gen::OutputForm if imag x = -1 then outi := -(gen::OutputForm) if C has imaginary:()->C then if imag x = -imaginary()$C then outi := -hconcat(imaginary()$C::OutputForm,gen::OutputForm) real x = 0 => return outi return outr + outi -- -- Many other funtctions are inherited from ComplexCategory -- -- To Do: -- 1) Check which other functions are still correct for higher-order algebras! -- -- re-defined these only to save function calls (x:% + y:%):% == per(rep x + rep y) (x:% = y:%):Boolean == rep x = rep y
spad
   Compiling FriCAS source code from file 
      /var/zope2/var/LatexWiki/442641077606971384-25px001.spad using 
      old system compiler.
   CALEY abbreviates domain CaleyDickson 
------------------------------------------------------------------------
   initializing NRLIB CALEY for CaleyDickson 
   compiling into NRLIB CALEY 
****** Domain: C already in scope
   compiling local rep : $ -> DirectProduct(2,C)
      CALEY;rep is replaced by x 
Time: 0.36 SEC.
compiling local per : DirectProduct(2,C) -> $ CALEY;per is replaced by x Time: 0 SEC.
compiling local pair : (C,C) -> DirectProduct(2,C) Time: 0.02 SEC.
compiling exported complex : (C,C) -> $ Time: 0 SEC.
compiling exported real : $ -> C Time: 0 SEC.
compiling exported imag : $ -> C Time: 0.01 SEC.
compiling exported Zero : () -> $ Time: 0 SEC.
compiling exported zero? : $ -> Boolean Time: 0 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported one? : $ -> Boolean Time: 0.01 SEC.
augmenting C: (SIGNATURE C conjugate (C C)) compiling exported * : ($,$) -> $ Time: 0.01 SEC.
compiling exported conjugate : $ -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0.01 SEC.
compiling exported conjugate : $ -> $ Time: 0 SEC.
compiling exported norm : $ -> C Time: 0.03 SEC.
****** Domain: C already in scope augmenting C: (Field) compiling exported inv : $ -> $ Time: 0 SEC.
compiling exported / : ($,$) -> $ Time: 0 SEC.
augmenting C: (SIGNATURE C rank ((PositiveInteger))) compiling exported rank : () -> PositiveInteger Time: 0 SEC.
compiling exported rank : () -> PositiveInteger CALEY;rank;Pi;19 is replaced by 2 Time: 0 SEC.
augmenting C: (SIGNATURE C basis ((Vector C))) compiling exported basis : () -> Vector $ Time: 0.04 SEC.
compiling exported basis : () -> Vector $ Time: 0 SEC.
augmenting C: (SIGNATURE C scalar (C (List C))) compiling exported scalar : List $ -> $ Time: 0.05 SEC.
compiling exported scalar : List $ -> $ Time: 0.01 SEC.
compiling exported coerce : $ -> OutputForm augmenting C: (SIGNATURE C imaginary (C)) Time: 0.02 SEC.
compiling exported + : ($,$) -> $ Time: 0 SEC.
compiling exported = : ($,$) -> Boolean Time: 0 SEC.
****** Domain: C already in scope augmenting C: (EuclideanDomain) ****** Domain: C already in scope augmenting C: (PolynomialFactorizationExplicit) ****** Domain: C already in scope augmenting C: (RadicalCategory) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) ****** Domain: C already in scope augmenting C: (RealNumberSystem) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) ****** Domain: C already in scope augmenting C: (Comparable) ****** Domain: C already in scope augmenting C: (ConvertibleTo (InputForm)) ****** Domain: C already in scope augmenting C: (ConvertibleTo (Pattern (Float))) ****** Domain: C already in scope augmenting C: (ConvertibleTo (Pattern (Integer))) ****** Domain: C already in scope augmenting C: (DifferentialRing) ****** Domain: C already in scope augmenting C: (Eltable C C) ****** Domain: C already in scope augmenting C: (EuclideanDomain) ****** Domain: C already in scope augmenting C: (Evalable C) ****** Domain: C already in scope augmenting C: (Field) ****** Domain: C already in scope augmenting C: (Finite) ****** Domain: C already in scope augmenting C: (FiniteFieldCategory) ****** Domain: C already in scope augmenting C: (InnerEvalable (Symbol) C) ****** Domain: C already in scope augmenting C: (IntegerNumberSystem) ****** Domain: C already in scope augmenting C: (IntegralDomain) ****** Domain: C already in scope augmenting C: (LinearlyExplicitRingOver (Integer)) ****** Domain: C already in scope augmenting C: (PartialDifferentialRing (Symbol)) ****** Domain: C already in scope augmenting C: (PatternMatchable (Float)) ****** Domain: C already in scope augmenting C: (PatternMatchable (Integer)) ****** Domain: C already in scope augmenting C: (RealConstant) ****** Domain: C already in scope augmenting C: (RealNumberSystem) ****** Domain: C already in scope augmenting C: (RetractableTo (Fraction (Integer))) ****** Domain: C already in scope augmenting C: (RetractableTo (Integer)) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) (time taken in buildFunctor: 2290)
;;; *** |CaleyDickson| REDEFINED
;;; *** |CaleyDickson| REDEFINED Time: 2.46 SEC.
Cumulative Statistics for Constructor CaleyDickson Time: 3.03 seconds
finalizing NRLIB CALEY Processing CaleyDickson for Browser database: --->-->CaleyDickson((scalar (% (List %)))): Not documented!!!! --->-->CaleyDickson(constructor): Not documented!!!! --->-->CaleyDickson(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.lsp" (written 18 APR 2011 07:51:08 PM):
; /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.fasl written ; compilation finished in 0:00:00.736 ------------------------------------------------------------------------ CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard, Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR

Test

axiom
R := Expression Integer

\label{eq1}\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ })(1)
Type: Type

Complex Numbers

axiom
C := CaleyDickson(R,'i,1)

\label{eq2}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 1)(2)
Type: Type
axiom
rank()$C

\label{eq3}2(3)
Type: PositiveInteger?
axiom
Ce:ILIST(C,0) := construct entries basis()$C

\label{eq4}\left[ 1, \: i \right](4)
Type: IndexedList?(CaleyDickson?(Expression(Integer),i,1),0)
axiom
matrix [[Ce.i * Ce.j for j in 0..#Ce-1] for i in 0..#Ce-1]

\label{eq5}\left[ 
\begin{array}{cc}
1 & i 
\
i & - 1 
(5)
Type: Matrix(CaleyDickson?(Expression(Integer),i,1))
axiom
--
-- compare
--
Cg:ILIST(Complex R,0) := construct map(x+-> complex(x.1,x.2),
           1$SquareMatrix(2,FRAC INT)::List List FRAC INT)

\label{eq6}\left[ 1, \: i \right](6)
Type: IndexedList?(Complex(Expression(Integer)),0)
axiom
matrix [[Cg.i * Cg.j for j in 0..#Cg-1] for i in 0..#Cg-1]

\label{eq7}\left[ 
\begin{array}{cc}
1 & i 
\
i & - 1 
(7)
Type: Matrix(Complex(Expression(Integer)))
axiom
-- normed?
c1:C := scalar [subscript('c1,[i]) for i in 1..2]

\label{eq8}{c 1_{1}}+{{c 1_{2}}i}(8)
Type: CaleyDickson?(Expression(Integer),i,1)
axiom
c2:C := scalar [subscript('c2,[i]) for i in 1..2]

\label{eq9}{c 2_{1}}+{{c 2_{2}}i}(9)
Type: CaleyDickson?(Expression(Integer),i,1)
axiom
c3:C := scalar [subscript('c3,[i]) for i in 1..8]

\label{eq10}{c 3_{1}}+{{c 3_{2}}i}(10)
Type: CaleyDickson?(Expression(Integer),i,1)
axiom
-- Normed?
test(norm(c1*c2)=norm(c1)*norm(c2))

\label{eq11} \mbox{\rm true} (11)
Type: Boolean
axiom
-- Commutative?
test( c1 * c2 = c2 * c1 )

\label{eq12} \mbox{\rm true} (12)
Type: Boolean
axiom
-- Associative?
test((c1 * c2) * c3 = c1 * (c2 * c3))

\label{eq13} \mbox{\rm true} (13)
Type: Boolean

Quaternions

axiom
Q := CaleyDickson(C,'j,1)

\label{eq14}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 1) , j , 1)(14)
Type: Type
axiom
rank()$Q

\label{eq15}4(15)
Type: PositiveInteger?
axiom
Qe:ILIST(Q,0) := construct entries basis()$Q

\label{eq16}\left[ 1, \: i , \: j , \:{ij}\right](16)
Type: IndexedList?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),0)
axiom
matrix [[Qe.i * Qe.j for j in 0..#Qe-1] for i in 0..#Qe-1]

\label{eq17}\left[ 
\begin{array}{cccc}
1 & i & j &{ij}
\
i & - 1 &{ij}& - j 
\
j & -{ij}& - 1 & i 
\
{ij}& j & - i & - 1 
(17)
Type: Matrix(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1))
axiom
--
-- compare
--
Qg:ILIST(Quaternion R,0) := construct map(x+-> quatern(x.1,x.2,x.3,x.4),
           1$SquareMatrix(4,FRAC INT)::List List FRAC INT)

\label{eq18}\left[ 1, \: i , \: j , \: k \right](18)
Type: IndexedList?(Quaternion(Expression(Integer)),0)
axiom
matrix [[Qg.i * Qg.j for j in 0..#Qg-1] for i in 0..#Qg-1]

\label{eq19}\left[ 
\begin{array}{cccc}
1 & i & j & k 
\
i & - 1 & k & - j 
\
j & - k & - 1 & i 
\
k & j & - i & - 1 
(19)
Type: Matrix(Quaternion(Expression(Integer)))
axiom
q1:Q := scalar [subscript('q1,[i]) for i in 1..4]

\label{eq20}{q 1_{1}}+{{q 1_{2}}i}+{{{q 1_{3}}+{{q 1_{4}}i}}j}(20)
Type: CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1)
axiom
q2:Q := scalar [subscript('q2,[i]) for i in 1..4]

\label{eq21}{q 2_{1}}+{{q 2_{2}}i}+{{{q 2_{3}}+{{q 2_{4}}i}}j}(21)
Type: CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1)
axiom
q3:Q := scalar [subscript('q3,[i]) for i in 1..8]

\label{eq22}{q 3_{1}}+{{q 3_{2}}i}+{{{q 3_{5}}+{{q 3_{6}}i}}j}(22)
Type: CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1)
axiom
-- Normed?
test( norm(q1*q2) = norm(q1)*norm(q2))

\label{eq23} \mbox{\rm true} (23)
Type: Boolean
axiom
-- Commutative?
test( q1 * q2 = q2 * q1 )

\label{eq24} \mbox{\rm false} (24)
Type: Boolean
axiom
-- Associative?
test((q1 * q2) * q3 = q1 * (q2 * q3))

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

Octonions

Ref: http://en.wikipedia.org/wiki/Octonion

axiom
O:=CaleyDickson(Q,'k,1)

\label{eq26}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 1) , j , 1) , k , 1)(26)
Type: Type
axiom
rank()$O

\label{eq27}8(27)
Type: PositiveInteger?
axiom
Oe:ILIST(O,0) := construct entries basis()$O

\label{eq28}\left[ 1, \: i , \: j , \:{ij}, \: k , \:{ik}, \:{jk}, \:{{ij}k}\right](28)
Type: IndexedList?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),0)
axiom
matrix [[Oe.i * Oe.j for j in 0..#Oe-1] for i in 0..#Oe-1]

\label{eq29}\left[ 
\begin{array}{cccccccc}
1 & i & j &{ij}& k &{ik}&{jk}&{{ij}k}
\
i & - 1 &{ij}& - j &{ik}& - k &{-{ij}k}&{jk}
\
j & -{ij}& - 1 & i &{jk}&{{ij}k}& - k &{- ik}
\
{ij}& j & - i & - 1 &{{ij}k}& -{jk}&{ik}& - k 
\
k &{- ik}& -{jk}&{-{ij}k}& - 1 & i & j &{ij}
\
{ik}& k &{-{ij}k}&{jk}& - i & - 1 & -{ij}& j 
\
{jk}&{{ij}k}& k &{- ik}& - j &{ij}& - 1 & - i 
\
{{ij}k}& -{jk}&{ik}& k & -{ij}& - j & i & - 1 
(29)
Type: Matrix(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1))
axiom
--
-- compare
--
Og:ILIST(Octonion R,0):=map(x+-> octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),
           1$SquareMatrix(8,FRAC INT)::List List FRAC INT)

\label{eq30}\left[ 1, \: i , \: j , \: k , \: E , \: I , \: J , \: K \right](30)
Type: IndexedList?(Octonion(Expression(Integer)),0)
axiom
matrix [[Og.i * Og.j for j in 0..#Og-1] for i in 0..#Og-1]

\label{eq31}\left[ 
\begin{array}{cccccccc}
1 & i & j & k & E & I & J & K 
\
i & - 1 & k & - j & I & - E & - K & J 
\
j & - k & - 1 & i & J & K & - E & - I 
\
k & j & - i & - 1 & K & - J & I & - E 
\
E & - I & - J & - K & - 1 & i & j & k 
\
I & E & - K & J & - i & - 1 & - k & j 
\
J & K & E & - I & - j & k & - 1 & - i 
\
K & - J & I & E & - k & - j & i & - 1 
(31)
Type: Matrix(Octonion(Expression(Integer)))
axiom
o1:O := scalar [subscript('o1,[i]) for i in 1..8]

\label{eq32}{o 1_{1}}+{{o 1_{2}}i}+{{{o 1_{3}}+{{o 1_{4}}i}}j}+{{{o 1_{5}}+{{o 1_{6}}i}+{{{o 1_{7}}+{{o 1_{8}}i}}j}}k}(32)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1)
axiom
o2:O := scalar [subscript('o2,[i]) for i in 1..8]

\label{eq33}{o 2_{1}}+{{o 2_{2}}i}+{{{o 2_{3}}+{{o 2_{4}}i}}j}+{{{o 2_{5}}+{{o 2_{6}}i}+{{{o 2_{7}}+{{o 2_{8}}i}}j}}k}(33)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1)
axiom
o3:O := scalar [subscript('o3,[i]) for i in 1..8]

\label{eq34}{o 3_{1}}+{{o 3_{2}}i}+{{{o 3_{3}}+{{o 3_{4}}i}}j}+{{{o 3_{5}}+{{o 3_{6}}i}+{{{o 3_{7}}+{{o 3_{8}}i}}j}}k}(34)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1)
axiom
-- normed?
test(norm(o1*o2)=norm(o1)*norm(o2))

\label{eq35} \mbox{\rm true} (35)
Type: Boolean
axiom
-- Commutative?
test( o1 * o2 = o2 * o1 )

\label{eq36} \mbox{\rm false} (36)
Type: Boolean
axiom
-- Associative?
test((o1 * o2) * o3 = o1 * (o2 * o3))

\label{eq37} \mbox{\rm false} (37)
Type: Boolean
axiom
-- Alternative?
test((o1 * o2) * o1 = o1 * (o2 * o1))

\label{eq38} \mbox{\rm true} (38)
Type: Boolean

Split-Octonions

Ref: http://en.wikipedia.org/wiki/Split-octonion

Note: Our table below is not identical the one shown in the reference where a different convention is used to define multiplication.

axiom
sO:=CaleyDickson(Q,'ℓ,-1)

\label{eq39}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 1) , j , 1) , � � , - 1)(39)
Type: Type
axiom
rank()$sO

\label{eq40}8(40)
Type: PositiveInteger?
axiom
sOe:ILIST(sO,0) := construct entries basis()$sO

\label{eq41}\left[ 1, \: i , \: j , \:{ij}, \: � � , \:{i � �}, \:{j � �}, \:{{ij}� �}\right](41)
Type: IndexedList?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),ℓ,-1),0)
axiom
matrix [[sOe.i * sOe.j for j in 0..#sOe-1] for i in 0..#sOe-1]

\label{eq42}\left[ 
\begin{array}{cccccccc}
1 & i & j &{ij}& � � &{i � �}&{j � �}&{{ij}� �}
\
i & - 1 &{ij}& - j &{i � �}& - � � &{-{ij}� �}&{j � �}
\
j & -{ij}& - 1 & i &{j � �}&{{ij}� �}& - � � &{- i � �}
\
{ij}& j & - i & - 1 &{{ij}� �}& -{j � �}&{i � �}& - � � 
\
� � &{- i � �}& -{j � �}&{-{ij}� �}& 1 & - i & - j & -{ij}
\
{i � �}& � � &{-{ij}� �}&{j � �}& i & 1 &{ij}& - j 
\
{j � �}&{{ij}� �}& � � &{- i � �}& j & -{ij}& 1 & i 
\
{{ij}� �}& -{j � �}&{i � �}& � � &{ij}& j & - i & 1 
(42)
Type: Matrix(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),ℓ,-1))
axiom
so1:sO := scalar [subscript('so1,[i]) for i in 1..8]

\label{eq43}{so 1_{1}}+{{so 1_{2}}i}+{{{so 1_{3}}+{{so 1_{4}}i}}j}+{{{so 1_{5}}+{{so 1_{6}}i}+{{{so 1_{7}}+{{so 1_{8}}i}}j}}� �}(43)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),ℓ,-1)
axiom
so2:sO := scalar [subscript('so2,[i]) for i in 1..8]

\label{eq44}{so 2_{1}}+{{so 2_{2}}i}+{{{so 2_{3}}+{{so 2_{4}}i}}j}+{{{so 2_{5}}+{{so 2_{6}}i}+{{{so 2_{7}}+{{so 2_{8}}i}}j}}� �}(44)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),ℓ,-1)
axiom
so3:sO := scalar [subscript('so3,[i]) for i in 1..8]

\label{eq45}{so 3_{1}}+{{so 3_{2}}i}+{{{so 3_{3}}+{{so 3_{4}}i}}j}+{{{so 3_{5}}+{{so 3_{6}}i}+{{{so 3_{7}}+{{so 3_{8}}i}}j}}� �}(45)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),ℓ,-1)
axiom
-- Normed?
test(norm(so1*so2)=norm(so1)*norm(so2))

\label{eq46} \mbox{\rm true} (46)
Type: Boolean
axiom
-- Commutative?
test( so1 * so2 = so2 * so1 )

\label{eq47} \mbox{\rm false} (47)
Type: Boolean
axiom
-- Associative?
test((so1 * so2) * so3 = so1 * (so2 * so3))

\label{eq48} \mbox{\rm false} (48)
Type: Boolean
axiom
-- Alternative?
test((so1 * so2) * so1 = - so1 * (so2 * so1))

\label{eq49} \mbox{\rm false} (49)
Type: Boolean

Sedenions

Ref: http://en.wikipedia.org/wiki/Sedenion

axiom
S:=CaleyDickson(O,'l,1)

\label{eq50}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 1) , j , 1) , k , 1) , l , 1)(50)
Type: Type
axiom
rank()$S

\label{eq51}16(51)
Type: PositiveInteger?
axiom
Se:ILIST(S,0) := construct entries basis()$S

\label{eq52}\left[ 1, \: i , \: j , \:{ij}, \: k , \:{ik}, \:{jk}, \:{{ij}k}, \: l , \:{il}, \:{jl}, \:{{ij}l}, \:{kl}, \:{{ik}l}, \:{{jk}l}, \:{{{ij}k}l}\right](52)
Type: IndexedList?(CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1),0)
axiom
matrix [[Se.i * Se.j for j in 0..#Se-1] for i in 0..#Se-1]

\label{eq53}\left[ 
\begin{array}{cccccccccccccccc}
1 & i & j &{ij}& k &{ik}&{jk}&{{ij}k}& l &{il}&{jl}&{{ij}l}&{kl}&{{ik}l}&{{jk}l}&{{{ij}k}l}
\
i & - 1 &{ij}& - j &{ik}& - k &{-{ij}k}&{jk}&{il}& - l &{-{ij}l}&{jl}&{{- ik}l}&{kl}&{{{ij}k}l}&{-{jk}l}
\
j & -{ij}& - 1 & i &{jk}&{{ij}k}& - k &{- ik}&{jl}&{{ij}l}& - l &{- il}&{-{jk}l}&{{-{ij}k}l}&{kl}&{{ik}l}
\
{ij}& j & - i & - 1 &{{ij}k}& -{jk}&{ik}& - k &{{ij}l}&{- jl}&{il}& - l &{{-{ij}k}l}&{{jk}l}&{{- ik}l}&{kl}
\
k &{- ik}& -{jk}&{-{ij}k}& - 1 & i & j &{ij}&{kl}&{{ik}l}&{{jk}l}&{{{ij}k}l}& - l &{- il}&{- jl}&{-{ij}l}
\
{ik}& k &{-{ij}k}&{jk}& - i & - 1 & -{ij}& j &{{ik}l}& -{kl}&{{{ij}k}l}&{-{jk}l}&{il}& - l &{{ij}l}&{- jl}
\
{jk}&{{ij}k}& k &{- ik}& - j &{ij}& - 1 & - i &{{jk}l}&{{-{ij}k}l}& -{kl}&{{ik}l}&{jl}&{-{ij}l}& - l &{il}
\
{{ij}k}& -{jk}&{ik}& k & -{ij}& - j & i & - 1 &{{{ij}k}l}&{{jk}l}&{{- ik}l}& -{kl}&{{ij}l}&{jl}&{- il}& - l 
\
l &{- il}&{- jl}&{-{ij}l}& -{kl}&{{- ik}l}&{-{jk}l}&{{-{ij}k}l}& - 1 & i & j &{ij}& k &{ik}&{jk}&{{ij}k}
\
{il}& l &{-{ij}l}&{jl}&{{- ik}l}&{kl}&{{{ij}k}l}&{-{jk}l}& - i & - 1 & -{ij}& j &{- ik}& k &{{ij}k}& -{jk}
\
{jl}&{{ij}l}& l &{- il}&{-{jk}l}&{{-{ij}k}l}&{kl}&{{ik}l}& - j &{ij}& - 1 & - i & -{jk}&{-{ij}k}& k &{ik}
\
{{ij}l}&{- jl}&{il}& l &{{-{ij}k}l}&{{jk}l}&{{- ik}l}&{kl}& -{ij}& - j & i & - 1 &{-{ij}k}&{jk}&{- ik}& k 
\
{kl}&{{ik}l}&{{jk}l}&{{{ij}k}l}& l &{- il}&{- jl}&{-{ij}l}& - k &{ik}&{jk}&{{ij}k}& - 1 & - i & - j & -{ij}
\
{{ik}l}& -{kl}&{{{ij}k}l}&{-{jk}l}&{il}& l &{{ij}l}&{- jl}&{- ik}& - k &{{ij}k}& -{jk}& i & - 1 &{ij}& - j 
\
{{jk}l}&{{-{ij}k}l}& -{kl}&{{ik}l}&{jl}&{-{ij}l}& l &{il}& -{jk}&{-{ij}k}& - k &{ik}& j & -{ij}& - 1 & i 
\
{{{ij}k}l}&{{jk}l}&{{- ik}l}& -{kl}&{{ij}l}&{jl}&{- il}& l &{-{ij}k}&{jk}&{- ik}& - k &{ij}& j & - i & - 1 
(53)
Type: Matrix(CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1))
axiom
s1:S := scalar [subscript('s1,[i]) for i in 1..16]

\label{eq54}\begin{array}{@{}l}
\displaystyle
{s 1_{1}}+{{s 1_{2}}i}+{{{s 1_{3}}+{{s 1_{4}}i}}j}+{{{s 1_{5}}+{{s 1_{6}}i}+{{{s 1_{7}}+{{s 1_{8}}i}}j}}k}+ 
\
\
\displaystyle
{{{s 1_{9}}+{{s 1_{10}}i}+{{{s 1_{11}}+{{s 1_{12}}i}}j}+{{{s 1_{13}}+{{s 1_{14}}i}+{{{s 1_{15}}+{{s 1_{16}}i}}j}}k}}l}
(54)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1)
axiom
s2:S := scalar [subscript('s2,[i]) for i in 1..16]

\label{eq55}\begin{array}{@{}l}
\displaystyle
{s 2_{1}}+{{s 2_{2}}i}+{{{s 2_{3}}+{{s 2_{4}}i}}j}+{{{s 2_{5}}+{{s 2_{6}}i}+{{{s 2_{7}}+{{s 2_{8}}i}}j}}k}+ 
\
\
\displaystyle
{{{s 2_{9}}+{{s 2_{10}}i}+{{{s 2_{11}}+{{s 2_{12}}i}}j}+{{{s 2_{13}}+{{s 2_{14}}i}+{{{s 2_{15}}+{{s 2_{16}}i}}j}}k}}l}
(55)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1)
axiom
s3:S := scalar [subscript('s3,[i]) for i in 1..16]

\label{eq56}\begin{array}{@{}l}
\displaystyle
{s 3_{1}}+{{s 3_{2}}i}+{{{s 3_{3}}+{{s 3_{4}}i}}j}+{{{s 3_{5}}+{{s 3_{6}}i}+{{{s 3_{7}}+{{s 3_{8}}i}}j}}k}+ 
\
\
\displaystyle
{{{s 3_{9}}+{{s 3_{10}}i}+{{{s 3_{11}}+{{s 3_{12}}i}}j}+{{{s 3_{13}}+{{s 3_{14}}i}+{{{s 3_{15}}+{{s 3_{16}}i}}j}}k}}l}
(56)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1)
axiom
-- normed?
test(norm(s1*s2)=norm(s1)*norm(s2))

\label{eq57} \mbox{\rm false} (57)
Type: Boolean
axiom
-- Commutative
test( s1 * s2 = s2 * s1 )

\label{eq58} \mbox{\rm false} (58)
Type: Boolean
axiom
-- Associative?
test( (s1 * s2) * s3 =  s1 * (s2 * s3) )

\label{eq59} \mbox{\rm false} (59)
Type: Boolean
axiom
-- Alternative?
test((s1 * s2) * s1 = - s1 * (s2 * s1))

\label{eq60} \mbox{\rm false} (60)
Type: Boolean
axiom
-- Power Associateive?
test((s1 * s1) * s1 = s1 * (s1 * s1))

\label{eq61} \mbox{\rm true} (61)
Type: Boolean
axiom
-- zero divisor
(Se.3 + Se.10) * (Se.6 - Se.15)

\label{eq62}0(62)
Type: CaleyDickson?(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,1),l,1)