|
|
last edited 2 years ago by Bill Page |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ||
Editor: Bill Page
Time: 2011/04/16 11:06:09 GMT-7 |
||
Note: better |
changed: -CaleyDickson(R:CommutativeRing,C:ComplexCategory(R)):Exports == Implementation where CaleyDickson(R:CommutativeRing,C:CommutativeRing,gamma:C):Exports == Implementation where removed: - - 0:% == per pair(0,0) - zero?(x):Boolean == rep(x)=0 - 1:% == per pair(1,0) - imaginary():% == per pair(0,1) - basis():Vector % == vector [1,imaginary()] changed: - (x:% = y:%):Boolean == rep x = rep y - (x:% * y:%):% == per pair(real x * real y - conjugate imag y * imag x, imag y * real x + imag x * conjugate real y) - (x:% + y:%):% == per(rep x + rep y) - (x:% - y:%):% == per(rep x - rep y) - conjugate(x:%):% == per pair(conjugate(real x), -imag x) 0:% == complex(0,0) zero?(x:%):Boolean == zero? rep(x) 1:% == per pair(1,0) one?(x:%):Boolean == one? real x and zero? imag x if C has ComplexCategory(R) then -- In general we need conjugate (x:% * y:%):% == complex(real x * real y - gamma*conjugate imag y * imag x, imag y * real x + imag x * conjugate real y) conjugate(x:%):% == complex(conjugate(real x), -imag x) else -- If not complex then conjugate is identity (x:% * y:%):% == complex(real x * real y - gamma*imag y * imag x, imag y * real x + imag x * real y) conjugate(x:%):% == per pair(real x, -imag x) removed: - retract(x:%):C == - imag x ~=0 => error "not retractable" - real x changed: - coerce(x:Integer):% == per pair(x::R::C,0) - coerce(x:%):OutputForm == real(x)::OutputForm + message("%I")*imag(x)::OutputForm -- -- The following and many other funtctions are inherited from ComplexCategory -- -- To Do: -- 1) Check which other functions are still correct for higher-order algebras! -- --basis():Vector % == vector [1,imaginary()] --(x:% - y:%):% == per(rep x - rep y) --imaginary():% == complex(0,1) --retract(x:%):C == -- imag x ~=0 => error "not retractable" -- real x --coerce(x:Integer):% == per pair(x::R::C,0) coerce(x:%):OutputForm == --imag x = 0 => real(x)::OutputForm --imag x = 1 => real(x)::OutputForm + message("%i") real(x)::OutputForm + message("%i")*paren(imag(x)::OutputForm) -- re-defined these just to save function calls (x:% + y:%):% == per(rep x + rep y) (x:% = y:%):Boolean == rep x = rep y added: Test changed: -Q:=CaleyDickson(FRAC INT,Complex FRAC INT) -q:Q:=complex(complex(1,1),complex(1,1)) )set output tex off )set output algebra on added: Complex Numbers \begin{axiom} C:=CaleyDickson(FRAC INT, FRAC INT,1) gens1:List C:=[complex(1,0),complex(0,1)] matrix [[gens1.i * gens1.j for j in 1..#gens1] for i in 1..#gens1] -- -- compare -- gens2:List Complex(FRAC INT):=[1,imaginary()] matrix [[gens2.i * gens2.j for j in 1..#gens2] for i in 1..#gens2] \end{axiom} Quaternions \begin{axiom} Q:=CaleyDickson(FRAC INT,C,1) gens3:List Q:=[ _ complex(complex(1,0)$C,complex(0,0)$C), _ complex(complex(0,1)$C,complex(0,0)$C), _ complex(complex(0,0)$C,complex(1,0)$C), _ complex(complex(0,0)$C,complex(0,1)$C)] matrix [[gens3.i * gens3.j for j in 1..#gens3] for i in 1..#gens3] -- -- compare -- gens4:List Quaternion(FRAC INT):=[ _ quatern(1,0,0,0), _ quatern(0,1,0,0), _ quatern(0,0,1,0), _ quatern(0,0,0,1)] matrix [[gens4.i * gens4.j for j in 1..#gens4] for i in 1..#gens4] \end{axiom}
Ref:
http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
"The Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras; since they extend the complex numbers, ... "
complex numbers, quaternions, octonions, sedenions, ...
)abbrev domain CALEY CaleyDickson CaleyDickson(R:CommutativeRing,C:CommutativeRing, gamma:C):Exports == Implementation where Exports ==> ComplexCategory(C) with if C has Field then Field Implementation ==> add Rep == DirectProduct(2, C) rep(x:%):Rep == x pretend Rep per(x:Rep):% == x pretend %
pair(x:C,y:C):Rep == directProduct vector [x, y] complex(x:C, y:C):% == per pair(x, y) real(x:%):C == rep(x).1 imag(x:%):C == rep(x).2
0:% == complex(0,0) zero?(x:%):Boolean == zero? rep(x) 1:% == per pair(1, 0) one?(x:%):Boolean == one? real x and zero? imag x
if C has ComplexCategory(R) then -- In general we need conjugate (x:% * y:%):% == complex(real x * real y - gamma*conjugate imag y * imag x,imag y * real x + imag x * conjugate real y) conjugate(x:%):% == complex(conjugate(real x), -imag x) else -- If not complex then conjugate is identity (x:% * y:%):% == complex(real x * real y - gamma*imag y * imag x, imag y * real x + imag x * real y) conjugate(x:%):% == per pair(real x, -imag x)
if C has Field then inv(x:%):% == per(inv(real(conjugate x * x))$C * rep conjugate x) (x:% / y:%):% == x * inv(y) coerce(x:C):% == per pair(x,0) -- -- The following and many other funtctions are inherited from ComplexCategory -- -- To Do: -- 1) Check which other functions are still correct for higher-order algebras! -- --basis():Vector % == vector [1, imaginary()] --(x:% - y:%):% == per(rep x - rep y) --imaginary():% == complex(0, 1) --retract(x:%):C == -- imag x ~=0 => error "not retractable" -- real x --coerce(x:Integer):% == per pair(x::R::C, 0) coerce(x:%):OutputForm == --imag x = 0 => real(x)::OutputForm --imag x = 1 => real(x)::OutputForm + message("%i") real(x)::OutputForm + message("%i")*paren(imag(x)::OutputForm)
-- re-defined these just to save function calls (x:% + y:%):% == per(rep x + rep y) (x:% = y:%):Boolean == rep x = rep y
Compiling FriCAS source code from file /var/zope2/var/LatexWiki/4173995386861702799-25px001.spad using old system compiler. CALEY abbreviates domain CaleyDickson ------------------------------------------------------------------------ initializing NRLIB CALEY for CaleyDickson compiling into NRLIB CALEY ****** Domain: C already in scope compiling local rep : $ -> DirectProduct(2,C) CALEY;rep is replaced by x Time: 0.54 SEC.
compiling local per : DirectProduct(2,C) -> $ CALEY;per is replaced by x Time: 0.01 SEC.
compiling local pair : (C,C) -> DirectProduct(2, C) Time: 0.02 SEC.
compiling exported complex : (C,C) -> $ Time: 0 SEC.
compiling exported real : $ -> C Time: 0.01 SEC.
compiling exported imag : $ -> C Time: 0.01 SEC.
compiling exported Zero : () -> $ Time: 0 SEC.
compiling exported zero? : $ -> Boolean Time: 0 SEC.
compiling exported One : () -> $ Time: 0 SEC.
compiling exported one? : $ -> Boolean Time: 0.01 SEC.
****** Domain: C already in scope augmenting C: (ComplexCategory R) compiling exported * : ($,$) -> $ Time: 0.09 SEC.
compiling exported conjugate : $ -> $ Time: 0 SEC.
compiling exported * : ($,$) -> $ Time: 0.02 SEC.
compiling exported conjugate : $ -> $ Time: 0 SEC.
****** Domain: C already in scope augmenting C: (Field) compiling exported inv : $ -> $ Time: 0.05 SEC.
compiling exported / : ($,$) -> $ Time: 0 SEC.
compiling exported coerce : C -> $ Time: 0 SEC.
compiling exported coerce : $ -> OutputForm Time: 0.01 SEC.
compiling exported + : ($,$) -> $ Time: 0 SEC.
compiling exported = : ($,$) -> Boolean Time: 0.01 SEC.
****** Domain: C already in scope augmenting C: (EuclideanDomain) ****** Domain: C already in scope augmenting C: (PolynomialFactorizationExplicit) ****** Domain: C already in scope augmenting C: (RadicalCategory) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) ****** Domain: C already in scope augmenting C: (RealNumberSystem) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) ****** Domain: C already in scope augmenting C: (Comparable) ****** Domain: C already in scope augmenting C: (ConvertibleTo (InputForm)) ****** Domain: C already in scope augmenting C: (ConvertibleTo (Pattern (Float))) ****** Domain: C already in scope augmenting C: (ConvertibleTo (Pattern (Integer))) ****** Domain: C already in scope augmenting C: (DifferentialRing) ****** Domain: C already in scope augmenting C: (Eltable C C) ****** Domain: C already in scope augmenting C: (EuclideanDomain) ****** Domain: C already in scope augmenting C: (Evalable C) ****** Domain: C already in scope augmenting C: (Field) ****** Domain: C already in scope augmenting C: (Finite) ****** Domain: C already in scope augmenting C: (FiniteFieldCategory) ****** Domain: C already in scope augmenting C: (InnerEvalable (Symbol) C) ****** Domain: C already in scope augmenting C: (IntegerNumberSystem) ****** Domain: C already in scope augmenting C: (IntegralDomain) ****** Domain: C already in scope augmenting C: (LinearlyExplicitRingOver (Integer)) ****** Domain: C already in scope augmenting C: (PartialDifferentialRing (Symbol)) ****** Domain: C already in scope augmenting C: (PatternMatchable (Float)) ****** Domain: C already in scope augmenting C: (PatternMatchable (Integer)) ****** Domain: C already in scope augmenting C: (RealConstant) ****** Domain: C already in scope augmenting C: (RealNumberSystem) ****** Domain: C already in scope augmenting C: (RetractableTo (Fraction (Integer))) ****** Domain: C already in scope augmenting C: (RetractableTo (Integer)) ****** Domain: C already in scope augmenting C: (TranscendentalFunctionCategory) (time taken in buildFunctor: 3140)
;;; *** |CaleyDickson| REDEFINED
;;; *** |CaleyDickson| REDEFINED Time: 3.50 SEC.
Cumulative Statistics for Constructor CaleyDickson Time: 4.28 seconds
finalizing NRLIB CALEY Processing CaleyDickson for Browser database: --->-->CaleyDickson(): Missing Description ; compiling file "/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.lsp" (written 16 APR 2011 11:06:06 AM):
; /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.fasl written ; compilation finished in 0:00:00.685 ------------------------------------------------------------------------ CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY
>> System error: The bounding indices 163 and 162 are bad for a sequence of length 162. See also: The ANSI Standard,Glossary entry for "bounding index designator" The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR
Test
)set output tex off
)set output algebra on
Complex Numbers
C:=CaleyDickson(FRAC INT,FRAC INT, 1)
(1) CaleyDickson(Fraction(Integer),Fraction(Integer), 1)
gens1:List C:=[complex(1,0), complex(0, 1)]
(2) [1 + %i(0),0 + %i(1)]
matrix [[gens1.i * gens1.j for j in 1..#gens1] for i in 1..#gens1]
+1 + %i(0) 0 + %i(1) + (3) | | +0 + %i(1) - 1 + %i(0)+
-- -- compare -- gens2:List Complex(FRAC INT):=[1,imaginary()]
(4) [1,%i]
matrix [[gens2.i * gens2.j for j in 1..#gens2] for i in 1..#gens2]
+1 %i + (5) | | +%i - 1+
Quaternions
Q:=CaleyDickson(FRAC INT,C, 1)
(6) CaleyDickson(Fraction(Integer),CaleyDickson(Fraction(Integer), Fraction(Intege r), 1), 1+(%i)*PAREN(0))
gens3:List Q:=[ _ complex(complex(1,0)$C, complex(0, 0)$C), _ complex(complex(0, 1)$C, complex(0, 0)$C), _ complex(complex(0, 0)$C, complex(1, 0)$C), _ complex(complex(0, 0)$C, complex(0, 1)$C)]
(7) [1 + %i(0) + %i(0 + %i(0)),0 + %i(1) + %i(0 + %i(0)), 0 + %i(0) + %i(1 + %i(0)), 0 + %i(0) + %i(0 + %i(1))]
matrix [[gens3.i * gens3.j for j in 1..#gens3] for i in 1..#gens3]
(8) [ [1 + %i(0) + %i(0 + %i(0)),0 + %i(1) + %i(0 + %i(0)), 0 + %i(0) + %i(1 + %i(0)), 0 + %i(0) + %i(0 + %i(1))] ,
[0 + %i(1) + %i(0 + %i(0)),- 1 + %i(0) + %i(0 + %i(0)), 0 + %i(0) + %i(0 + %i(1)), 0 + %i(0) + %i(- 1 + %i(0))] ,
[0 + %i(0) + %i(1 + %i(0)),0 + %i(0) + %i(0 + %i(- 1)), - 1 + %i(0) + %i(0 + %i(0)), 0 + %i(1) + %i(0 + %i(0))] ,
[0 + %i(0) + %i(0 + %i(1)),0 + %i(0) + %i(1 + %i(0)), 0 + %i(- 1) + %i(0 + %i(0)), - 1 + %i(0) + %i(0 + %i(0))] ]
-- -- compare -- gens4:List Quaternion(FRAC INT):=[ _ quatern(1,0, 0, 0), _ quatern(0, 1, 0, 0), _ quatern(0, 0, 1, 0), _ quatern(0, 0, 0, 1)]
(9) [1,i, j, k]
matrix [[gens4.i * gens4.j for j in 1..#gens4] for i in 1..#gens4]
+1 i j k + | | |i - 1 k - j| (10) | | |j - k - 1 i | | | +k j - i - 1+