Ref:
http://en.wikipedia.org/wiki/Cayley%E2%80%93Dickson_construction
"The Cayley–Dickson construction, named after Arthur Cayley and Leonard Eugene Dickson, produces a sequence of algebras over the field of real numbers, each with twice the dimension of the previous one. The algebras produced by this process are known as Cayley–Dickson algebras; since they extend the complex numbers, ... "
complex numbers, quaternions, octonions, sedenions, ...
spad
)abbrev domain CALEY CaleyDickson
CaleyDickson(C:CommutativeRing,gen:Symbol,gamma:C):ComplexCategory(C)
== add
Rep == DirectProduct(2,C)
rep(x:%):Rep == x pretend Rep
per(x:Rep):% == x pretend %
pair(x:C,y:C):Rep == directProduct vector [x,y]
complex(x:C,y:C):% == per pair(x,y)
real(x:%):C == rep(x).1
imag(x:%):C == rep(x).2
0:% == complex(0,0)
zero?(x:%):Boolean == zero? rep(x)
1:% == per pair(1,0)
one?(x:%):Boolean == one? real x and zero? imag x
if C has conjugate:C->C then
-- In general we need conjugate
(x:% * y:%):% ==
--print(x::OutputForm * y::OutputForm)
complex(real x * real y - gamma*conjugate imag y * imag x,
imag y * real x + imag x * conjugate real y)
conjugate(x:%):% == complex(conjugate(real x), -imag x)
else
-- If not complex then conjugate is identity
(x:% * y:%):% ==
complex(real x * real y - gamma*imag y * imag x,
imag y * real x + imag x * real y)
conjugate(x:%):% == complex(real x, -imag x)
if C has Field then
inv(x:%):% == per(inv(real(conjugate x * x))$C * rep conjugate x)
(x:% / y:%):% == x * inv(y)
if C has rank:()->PositiveInteger then
rank():PositiveInteger == 2*rank()$C
else
rank():PositiveInteger == 2
if C has basis:()->Vector C then
basis():Vector % ==
concat([complex(i,0) for i in entries basis()$C],
[complex(0,i) for i in entries basis()$C])
else
basis():Vector % == [1,imaginary()]
coerce(x:%):OutputForm ==
outr:=real(x)::OutputForm
imag x = 0 => return outr
outi := hconcat(imag(x)::OutputForm, gen::OutputForm)
if imag x = 1 then
outi := gen::OutputForm
if imag x = -1 then
outi := -(gen::OutputForm)
if C has imaginary:()->C then
if imag x = -imaginary()$C then
outi := -hconcat(imaginary()$C::OutputForm,gen::OutputForm)
real x = 0 => return outi
return hconcat(outr, outi)
--
-- Many other funtctions are inherited from ComplexCategory
--
-- To Do:
-- 1) Check which other functions are still correct for higher-order algebras!
--
-- re-defined these only to save function calls
(x:% + y:%):% == per(rep x + rep y)
(x:% = y:%):Boolean == rep x = rep y
spad
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/7769095362333751115-25px001.spad using
old system compiler.
CALEY abbreviates domain CaleyDickson
------------------------------------------------------------------------
initializing NRLIB CALEY for CaleyDickson
compiling into NRLIB CALEY
****** Domain: C already in scope
compiling local rep : $ -> DirectProduct(2,C)
CALEY;rep is replaced by x
Time: 0.37 SEC.
compiling local per : DirectProduct(2,C) -> $
CALEY;per is replaced by x
Time: 0.01 SEC.
compiling local pair : (C,C) -> DirectProduct(2,C)
Time: 0.01 SEC.
compiling exported complex : (C,C) -> $
Time: 0 SEC.
compiling exported real : $ -> C
Time: 0 SEC.
compiling exported imag : $ -> C
Time: 0 SEC.
compiling exported Zero : () -> $
Time: 0 SEC.
compiling exported zero? : $ -> Boolean
Time: 0 SEC.
compiling exported One : () -> $
Time: 0 SEC.
compiling exported one? : $ -> Boolean
Time: 0 SEC.
augmenting C: (SIGNATURE C conjugate (C C))
compiling exported * : ($,$) -> $
Time: 0.01 SEC.
compiling exported conjugate : $ -> $
Time: 0 SEC.
compiling exported * : ($,$) -> $
Time: 0 SEC.
compiling exported conjugate : $ -> $
Time: 0 SEC.
****** Domain: C already in scope
augmenting C: (Field)
compiling exported inv : $ -> $
Time: 0 SEC.
compiling exported / : ($,$) -> $
Time: 0 SEC.
augmenting C: (SIGNATURE C rank ((PositiveInteger)))
compiling exported rank : () -> PositiveInteger
Time: 0 SEC.
compiling exported rank : () -> PositiveInteger
CALEY;rank;Pi;18 is replaced by 2
Time: 0 SEC.
augmenting C: (SIGNATURE C basis ((Vector C)))
compiling exported basis : () -> Vector $
Time: 0.05 SEC.
compiling exported basis : () -> Vector $
Time: 0 SEC.
compiling exported coerce : $ -> OutputForm
augmenting C: (SIGNATURE C imaginary (C))
Time: 0.06 SEC.
compiling exported + : ($,$) -> $
Time: 0 SEC.
compiling exported = : ($,$) -> Boolean
Time: 0 SEC.
****** Domain: C already in scope
augmenting C: (EuclideanDomain)
****** Domain: C already in scope
augmenting C: (PolynomialFactorizationExplicit)
****** Domain: C already in scope
augmenting C: (RadicalCategory)
****** Domain: C already in scope
augmenting C: (TranscendentalFunctionCategory)
****** Domain: C already in scope
augmenting C: (RealNumberSystem)
****** Domain: C already in scope
augmenting C: (TranscendentalFunctionCategory)
****** Domain: C already in scope
augmenting C: (Comparable)
****** Domain: C already in scope
augmenting C: (ConvertibleTo (InputForm))
****** Domain: C already in scope
augmenting C: (ConvertibleTo (Pattern (Float)))
****** Domain: C already in scope
augmenting C: (ConvertibleTo (Pattern (Integer)))
****** Domain: C already in scope
augmenting C: (DifferentialRing)
****** Domain: C already in scope
augmenting C: (Eltable C C)
****** Domain: C already in scope
augmenting C: (EuclideanDomain)
****** Domain: C already in scope
augmenting C: (Evalable C)
****** Domain: C already in scope
augmenting C: (Field)
****** Domain: C already in scope
augmenting C: (Finite)
****** Domain: C already in scope
augmenting C: (FiniteFieldCategory)
****** Domain: C already in scope
augmenting C: (InnerEvalable (Symbol) C)
****** Domain: C already in scope
augmenting C: (IntegerNumberSystem)
****** Domain: C already in scope
augmenting C: (IntegralDomain)
****** Domain: C already in scope
augmenting C: (LinearlyExplicitRingOver (Integer))
****** Domain: C already in scope
augmenting C: (PartialDifferentialRing (Symbol))
****** Domain: C already in scope
augmenting C: (PatternMatchable (Float))
****** Domain: C already in scope
augmenting C: (PatternMatchable (Integer))
****** Domain: C already in scope
augmenting C: (RealConstant)
****** Domain: C already in scope
augmenting C: (RealNumberSystem)
****** Domain: C already in scope
augmenting C: (RetractableTo (Fraction (Integer)))
****** Domain: C already in scope
augmenting C: (RetractableTo (Integer))
****** Domain: C already in scope
augmenting C: (TranscendentalFunctionCategory)
(time taken in buildFunctor: 2420)
;;; *** |CaleyDickson| REDEFINED
;;; *** |CaleyDickson| REDEFINED
Time: 2.50 SEC.
Cumulative Statistics for Constructor CaleyDickson
Time: 3.01 seconds
finalizing NRLIB CALEY
Processing CaleyDickson for Browser database:
--->-->CaleyDickson(): Missing Description
; compiling file "/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.lsp" (written 17 APR 2011 06:47:24 PM):
; /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY.fasl written
; compilation finished in 0:00:00.746
------------------------------------------------------------------------
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY
>> System error:
The bounding indices 163 and 162 are bad for a sequence of length 162.
See also:
The ANSI Standard, Glossary entry for "bounding index designator"
The ANSI Standard, writeup for Issue SUBSEQ-OUT-OF-BOUNDS:IS-AN-ERROR
Test
axiom
)set output tex on
axiom
)set output algebra off
Complex Numbers
axiom
C := CaleyDickson(FRAC INT,'i,1)
Type: Type
axiom
rank()$C
axiom
gens1 := entries basis()$C
Type: List(CaleyDickson
?(Fraction(Integer),
i,
1))
axiom
matrix [[gens1.i * gens1.j for j in 1..#gens1] for i in 1..#gens1]
Type: Matrix(CaleyDickson
?(Fraction(Integer),
i,
1))
axiom
--
-- compare
--
gens2:=map(x+-> complex(x.1,x.2),
1$SquareMatrix(2,FRAC INT)::List List FRAC INT)
Type: List(Complex(Fraction(Integer)))
axiom
matrix [[gens2.i * gens2.j for j in 1..#gens2] for i in 1..#gens2]
Type: Matrix(Complex(Fraction(Integer)))
Quaternions
axiom
Q := CaleyDickson(C,'j,1)
Type: Type
axiom
rank()$Q
axiom
gens3 :=entries basis()$Q
Type: List(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1))
axiom
matrix [[gens3.i * gens3.j for j in 1..#gens3] for i in 1..#gens3]
Type: Matrix(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1))
axiom
--
-- compare
--
gens4:=map(x+-> quatern(x.1,x.2,x.3,x.4),
1$SquareMatrix(4,FRAC INT)::List List FRAC INT)
Type: List(Quaternion(Fraction(Integer)))
axiom
matrix [[gens4.i * gens4.j for j in 1..#gens4] for i in 1..#gens4]
Type: Matrix(Quaternion(Fraction(Integer)))
Octonions
axiom
O:=CaleyDickson(Q,'k,1)
Type: Type
axiom
rank()$O
axiom
gens5 := entries basis()$O
Type: List(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1),
k,
1))
axiom
matrix [[gens5.i * gens5.j for j in 1..#gens5] for i in 1..#gens5]
Type: Matrix(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1),
k,
1))
axiom
--
-- compare
--
gens6:=map(x+-> octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),
1$SquareMatrix(8,FRAC INT)::List List FRAC INT)
Type: List(Octonion(Fraction(Integer)))
axiom
matrix [[gens6.i * gens6.j for j in 1..#gens6] for i in 1..#gens6]
Type: Matrix(Octonion(Fraction(Integer)))
Sedenions
axiom
S:=CaleyDickson(O,'l,1)
Type: Type
axiom
rank()$S
axiom
gens7 := entries basis()$S
Type: List(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1),
k,
1),
l,
1))
axiom
matrix [[gens7.i * gens7.j for j in 1..#gens7] for i in 1..#gens7]
Type: Matrix(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(CaleyDickson
?(Fraction(Integer),
i,
1),
j,
1),
k,
1),
l,
1))