fricas (1) -> integrate(1/(1+x^4),
Type: Union(f1: OrderedCompletion?(Expression(Integer)),
is obviously wrong. UPDATE: this problem is fixed in FriCAS. fricas integrate(1/(1+x^4),
Type: Union(Expression(Integer),
is an antiderivative only for . The correct antiderivative, i.e., which is defined on all of can be obtained from the above expression by replacing with . UPDATE: this problem is also fixed in FriCAS, although the result could be simpler. For example, mathematica 5.2 gives: In[10]:= Integrate[1/(1+x^4), x] Out[10]= (-2 ArcTan[1 - Sqrt[2] x] + 2 ArcTan[1 + Sqrt[2] x] - 2 2 Log[-1 + Sqrt[2] x - x ] + Log[1 + Sqrt[2] x + x ]) / (4 Sqrt[2]) However, fricas integrate((x^4+2*a*x^2+1)^-1,
Type: Union(f1: OrderedCompletion?(Expression(Integer)),
is wrong, also in FriCAS. However, the solution really depends on the value of a. Mathematica 5.2 gives: In[2]:= Integrate[(x^4+2*a*x^2+1)^-1, {x,0,Infinity}] 2 Out[2]= If[Im[Sqrt[-a - Sqrt[-1 + a ]]] > 0 && 2 Im[Sqrt[-a + Sqrt[-1 + a ]]] > 0, -I 2 2 (-- Pi) / (Sqrt[-a - Sqrt[-1 + a ]] Sqrt[-a + Sqrt[-1 + a ]] 2 2 2 (Sqrt[-a - Sqrt[-1 + a ]] + Sqrt[-a + Sqrt[-1 + a ]])), 1 Integrate[---------------, {x, 0, Infinity}, 2 4 1 + 2 a x + x Assumptions -> 2 2 Im[Sqrt[-a - Sqrt[-1 + a ]]] <= 0 || Im[Sqrt[-a + Sqrt[-1 + a ]]] <= 0] ] The definite version seems to be correct: fricas D(integrate((x^4+2*a*x^2+1)^-1,
Type: Expression(Integer)
another similar evaluation --kratt6, Thu, 10 Jan 2008 01:28:46 -0800 reply The following also seems to be wrong:
fricas ex := integrate(1/(a+x**4), compare with fricas integrate(1/(1+x**4),Name: #293 integrate (1/(1+x^4),x = %minusInfinity..%plusInfinity) => #293 integrate (1/(1+x^4)
http://fricas.svn.sourceforge.net/viewvc/fricas/trunk/src/algebra/gaussian.spad.pamphlet?r1=257&r2=358&view=patch
I'm not sure it solves the issue though.
Name: #293 integrate 1/(1+x)^4 => #293 integrate 1/(1+x^4)
Name: #293 integrate 1/(4x^2-1) => #293 integrate 1/(1+x^4)
Name: #293 integrate 1/(1+x^4) => #293 integrate 1x/(1+x^4)
Name: #293 integrate 1x/(1+x^4) => #293 integrate 1/(1+x^4)
Name: #293 integrate 1/(1+x^4) => #293 integrate 1/(1+x^2)
|