login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFrobeniusAlgebra revision 1 of 26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Editor: Bill Page
Time: 2011/02/11 17:47:40 GMT-8
Note: new

changed:
-
An n-dimensional algebra is represented by a tensor $Y=\{ y_{ij}^k \} \ i,j,k =1,2, ... n $ viewed as an operator with two inputs 'i,j' and one output 'k'.
\begin{axiom}
n:=2
T:=CartesianTensor(1,n,EXPR INT)
Y:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T
\end{axiom}
Given two vectors 'U' and 'V'
\begin{axiom}
U:=unravel([script(u,[[],[i]]) for i in 1..n])$T
V:=unravel([script(v,[[],[i]]) for i in 1..n])$T
\end{axiom}
the tensor 'Y' operates on their tensor product
\begin{axiom}
UV:=product(U,V)
YUV:=product(Y,UV)
YUV.[1,1,1,1,2]
YUV.[1,1,1,2,1]
YUV.[1,1,2,1,1]
YUV.[1,2,1,1,1]
YUV.[2,1,1,1,1]
Y*U*V
\end{axiom}

An n-dimensional algebra is represented by a tensor Y=\{ y_{ij}^k \} \ i,j,k =1,2, ... n viewed as an operator with two inputs i,j and one output k.

axiom
n:=2

\label{eq1}2(1)
Type: PositiveInteger?
axiom
T:=CartesianTensor(1,n,EXPR INT)

\label{eq2}\hbox{\axiomType{CartesianTensor}\ } (1, 2, \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Domain
axiom
Y:=unravel(concat concat
  [[[script(y,[[i,j],[k]])
    for i in 1..n]
      for j in 1..n]
        for k in 1..n]
          )$T

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{y_{1, \: 1}^{1}}&{y_{2, \: 1}^{1}}
\
{y_{1, \: 2}^{1}}&{y_{2, \: 2}^{1}}
(3)
Type: CartesianTensor?(1,2,Expression(Integer))

Given two vectors U and V

axiom
U:=unravel([script(u,[[],[i]]) for i in
1..n])$T

\label{eq4}\left[{u^{1}}, \:{u^{2}}\right](4)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
V:=unravel([script(v,[[],[i]]) for i in
1..n])$T

\label{eq5}\left[{v^{1}}, \:{v^{2}}\right](5)
Type: CartesianTensor?(1,2,Expression(Integer))

the tensor Y operates on their tensor product

axiom
UV:=product(U,V)

\label{eq6}\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}}&{{u^{1}}\ {v^{2}}}
\
{{u^{2}}\ {v^{1}}}&{{u^{2}}\ {v^{2}}}
(6)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
YUV:=product(Y,UV)

\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 
\begin{array}{cc}
{\left[ 
\begin{array}{cc}
{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
\
{{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}&{{u^{2}}\ {v^{2}}\ {y_{1, \: 1}^{1}}}
(7)
Type: CartesianTensor?(1,2,Expression(Integer))
axiom
YUV.[1,1,1,1,2]

\label{eq8}{u^{1}}\ {v^{2}}\ {y_{1, \: 1}^{1}}(8)
Type: Expression(Integer)
axiom
YUV.[1,1,1,2,1]

\label{eq9}{u^{2}}\ {v^{1}}\ {y_{1, \: 1}^{1}}(9)
Type: Expression(Integer)
axiom
YUV.[1,1,2,1,1]

\label{eq10}{u^{1}}\ {v^{1}}\ {y_{2, \: 1}^{1}}(10)
Type: Expression(Integer)
axiom
YUV.[1,2,1,1,1]

\label{eq11}{u^{1}}\ {v^{1}}\ {y_{1, \: 2}^{1}}(11)
Type: Expression(Integer)
axiom
YUV.[2,1,1,1,1]

\label{eq12}{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}(12)
Type: Expression(Integer)
axiom
Y*U*V

\label{eq13}\begin{array}{@{}l}
\displaystyle
\left[{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{1}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{1}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{1}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{1}}}}, \: \right.
\
\
\displaystyle
\left.{{{u^{2}}\ {v^{2}}\ {y_{2, \: 2}^{2}}}+{{u^{2}}\ {v^{1}}\ {y_{2, \: 1}^{2}}}+{{u^{1}}\ {v^{2}}\ {y_{1, \: 2}^{2}}}+{{u^{1}}\ {v^{1}}\ {y_{1, \: 1}^{2}}}}\right] 
(13)
Type: CartesianTensor?(1,2,Expression(Integer))