|
|
last edited 6 years ago by Bill Page |
1 | ||
Editor: Bill Page
Time: 2018/07/06 22:46:02 GMT+0 |
||
Note: |
changed: - This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute. \begin{axiom} )sh XDistributedPolynomial \end{axiom}
This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute.
(1) -> )sh XDistributedPolynomial
XDistributedPolynomial(vl: OrderedSet,R: Ring) is a domain constructor Abbreviation for XDistributedPolynomial is XDPOLY This constructor is not exposed in this frame. ------------------------------- Operations --------------------------------
?*? : (vl,%) -> % ?*? : (R, %) -> % ?*? : (%, R) -> % ?*? : (Integer, %) -> % ?*? : (%, %) -> % ?*? : (PositiveInteger, %) -> % ?+? : (%, %) -> % -? : % -> % ?-? : (%, %) -> % ?=? : (%, %) -> Boolean 1 : () -> % 0 : () -> % ?^? : (%, PositiveInteger) -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % associator : (%, %, %) -> % coef : (%, %) -> R coef : (%, FreeMonoid(vl)) -> R coefficients : % -> List(R) coerce : vl -> % coerce : FreeMonoid(vl) -> % coerce : R -> % coerce : Integer -> % coerce : % -> OutputForm commutator : (%, %) -> % constant : % -> R constant? : % -> Boolean degree : % -> NonNegativeInteger latex : % -> String lquo : (%, %) -> % lquo : (%, FreeMonoid(vl)) -> % lquo : (%, vl) -> % map : ((R -> R), %) -> % maxdeg : % -> FreeMonoid(vl) mindeg : % -> FreeMonoid(vl) mirror : % -> % monomial? : % -> Boolean monomials : % -> List(%) one? : % -> Boolean opposite? : (%, %) -> Boolean quasiRegular : % -> % quasiRegular? : % -> Boolean recip : % -> Union(%, "failed") retract : % -> FreeMonoid(vl) retract : % -> R rquo : (%, %) -> % rquo : (%, FreeMonoid(vl)) -> % rquo : (%, vl) -> % sample : () -> % varList : % -> List(vl) zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (NonNegativeInteger, %) -> % ?^? : (%, NonNegativeInteger) -> % characteristic : () -> NonNegativeInteger coefficient : (%, FreeMonoid(vl)) -> R construct : List(Record(k: FreeMonoid(vl), c: R)) -> % constructOrdered : List(Record(k: FreeMonoid(vl), c: R)) -> % if FreeMonoid(vl) has COMPAR leadingCoefficient : % -> R if FreeMonoid(vl) has COMPAR leadingMonomial : % -> % if FreeMonoid(vl) has COMPAR leadingSupport : % -> FreeMonoid(vl) if FreeMonoid(vl) has COMPAR leadingTerm : % -> Record(k: FreeMonoid(vl), c: R) if FreeMonoid(vl) has COMPAR leftPower : (%, NonNegativeInteger) -> % leftPower : (%, PositiveInteger) -> % leftRecip : % -> Union(%, "failed") linearExtend : ((FreeMonoid(vl) -> R), %) -> R if R has COMRING listOfTerms : % -> List(Record(k: FreeMonoid(vl), c: R)) mindegTerm : % -> Record(k: FreeMonoid(vl), c: R) monomial : (R, FreeMonoid(vl)) -> % numberOfMonomials : % -> NonNegativeInteger plenaryPower : (%, PositiveInteger) -> % if R has COMRING reductum : % -> % if FreeMonoid(vl) has COMPAR retractIfCan : % -> Union(FreeMonoid(vl), "failed") retractIfCan : % -> Union(R, "failed") rightPower : (%, NonNegativeInteger) -> % rightPower : (%, PositiveInteger) -> % rightRecip : % -> Union(%, "failed") sh : (%, NonNegativeInteger) -> % if R has COMRING sh : (%, %) -> % if R has COMRING smaller? : (%, %) -> Boolean if R has COMPAR and FreeMonoid(vl) has COMPAR subtractIfCan : (%, %) -> Union(%, "failed") support : % -> List(FreeMonoid(vl)) trunc : (%, NonNegativeInteger) -> %