login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

This type supports distributed multivariate polynomials whose variables do not commute. The coefficient ring may be non-commutative too. However, coefficients and variables commute.

fricas
(1) -> )sh XDistributedPolynomial
XDistributedPolynomial(vl: OrderedSet,R: Ring) is a domain constructor Abbreviation for XDistributedPolynomial is XDPOLY This constructor is not exposed in this frame. ------------------------------- Operations --------------------------------
?*? : (vl, %) -> % ?*? : (R, %) -> % ?*? : (%, R) -> % ?*? : (Integer, %) -> % ?*? : (%, %) -> % ?*? : (PositiveInteger, %) -> % ?+? : (%, %) -> % -? : % -> % ?-? : (%, %) -> % ?=? : (%, %) -> Boolean 1 : () -> % 0 : () -> % ?^? : (%, PositiveInteger) -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % associator : (%, %, %) -> % coef : (%, %) -> R coef : (%, FreeMonoid(vl)) -> R coefficients : % -> List(R) coerce : vl -> % coerce : FreeMonoid(vl) -> % coerce : R -> % coerce : Integer -> % coerce : % -> OutputForm commutator : (%, %) -> % constant : % -> R constant? : % -> Boolean degree : % -> NonNegativeInteger latex : % -> String lquo : (%, %) -> % lquo : (%, FreeMonoid(vl)) -> % lquo : (%, vl) -> % map : ((R -> R), %) -> % maxdeg : % -> FreeMonoid(vl) mindeg : % -> FreeMonoid(vl) mirror : % -> % monomial? : % -> Boolean monomials : % -> List(%) one? : % -> Boolean opposite? : (%, %) -> Boolean quasiRegular : % -> % quasiRegular? : % -> Boolean recip : % -> Union(%,"failed") retract : % -> FreeMonoid(vl) retract : % -> R rquo : (%, %) -> % rquo : (%, FreeMonoid(vl)) -> % rquo : (%, vl) -> % sample : () -> % varList : % -> List(vl) zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (NonNegativeInteger, %) -> % ?^? : (%, NonNegativeInteger) -> % characteristic : () -> NonNegativeInteger coefficient : (%, FreeMonoid(vl)) -> R construct : List(Record(k: FreeMonoid(vl),c: R)) -> % constructOrdered : List(Record(k: FreeMonoid(vl),c: R)) -> % if FreeMonoid(vl) has COMPAR leadingCoefficient : % -> R if FreeMonoid(vl) has COMPAR leadingMonomial : % -> % if FreeMonoid(vl) has COMPAR leadingSupport : % -> FreeMonoid(vl) if FreeMonoid(vl) has COMPAR leadingTerm : % -> Record(k: FreeMonoid(vl),c: R) if FreeMonoid(vl) has COMPAR leftPower : (%, NonNegativeInteger) -> % leftPower : (%, PositiveInteger) -> % leftRecip : % -> Union(%,"failed") linearExtend : ((FreeMonoid(vl) -> R), %) -> R if R has COMRING listOfTerms : % -> List(Record(k: FreeMonoid(vl),c: R)) mindegTerm : % -> Record(k: FreeMonoid(vl),c: R) monomial : (R, FreeMonoid(vl)) -> % numberOfMonomials : % -> NonNegativeInteger plenaryPower : (%, PositiveInteger) -> % if R has COMRING reductum : % -> % if FreeMonoid(vl) has COMPAR retractIfCan : % -> Union(FreeMonoid(vl),"failed") retractIfCan : % -> Union(R,"failed") rightPower : (%, NonNegativeInteger) -> % rightPower : (%, PositiveInteger) -> % rightRecip : % -> Union(%,"failed") sh : (%, NonNegativeInteger) -> % if R has COMRING sh : (%, %) -> % if R has COMRING smaller? : (%, %) -> Boolean if R has COMPAR and FreeMonoid(vl) has COMPAR subtractIfCan : (%, %) -> Union(%,"failed") support : % -> List(FreeMonoid(vl)) trunc : (%, NonNegativeInteger) -> %




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: