login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for Simpson's method revision 4 of 5

1 2 3 4 5
Editor: test1
Time: 2019/06/25 14:12:30 GMT+0
Note:

changed:
-This routine provides Simpson's method for numerical integration.  Although Axiom already provides a Simpson's method, this version has a syntax that will be intuitive to anyone who has used the integrate() function.
This routine provides Simpson's method for numerical integration.  Although FriCAS already provides a Simpson's method, this version has a syntax that will be intuitive to anyone who has used the integrate() function.

This routine provides Simpson's method for numerical integration. Although FriCAS? already provides a Simpson's method, this version has a syntax that will be intuitive to anyone who has used the integrate() function.

spad
)abbrev package SIMPINT SimpsonIntegration
SimpsonIntegration(): Exports == Implementation where
  F        ==> Float
  SF       ==> Segment F
  EF       ==> Expression F
  SBF      ==> SegmentBinding F
  Ans      ==> Record(value:EF, error:EF)
Exports ==> with simpson : (EF,SBF,EF) -> Ans simpson : (EF,SBF) -> Ans
Implementation ==> add simpson(func:EF, sbf:SBF, tol:EF) == a : F := lo(segment(sbf)) b : F := hi(segment(sbf)) x : EF := variable(sbf) :: EF
h : F k : Integer n : Integer
simps : EF newsimps : EF
oe : EF ne : EF err : EF
sumend : EF := eval(func, x, a::EF) + eval(func, x, b::EF) sumodd : EF := 0.0 :: EF sumeven : EF := 0.0 :: EF
-- First base case -- 2 intervals ---------------- n := 2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
simps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
-- Second base case -- 4 intervals --------------- n := n*2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
oe := abs(newsimps-simps) -- old error simps := newsimps
-- general case ----------------------------------- while true repeat n := n*2 h := (b-a)/n
sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
-- This is a check of Richardson's error estimate. -- Usually p is approximately 4 for Simpson's rule, but -- occasionally convergence is slower
ne := abs( newsimps - simps ) -- new error
if ( (ne<oe*2.0) and (oe<ne*16.5) ) then -- Richardson should be ok -- p := log(oe/ne)/log(2.0) err := ne/(oe/ne-1.0::EF) -- ne/(2^p-1) else err := ne -- otherwise estimate crudely
oe := ne simps := newsimps
if( err < tol ) then break
[ newsimps, err ]
simpson(func:EF, sbf:SBF) == simpson( func, sbf, 1.e-6::EF )
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/1602341404191315960-25px001.spad
      using old system compiler.
   SIMPINT abbreviates package SimpsonIntegration 
------------------------------------------------------------------------
   initializing NRLIB SIMPINT for SimpsonIntegration 
   compiling into NRLIB SIMPINT 
   compiling exported simpson : (Expression Float,SegmentBinding Float,Expression Float) -> Record(value: Expression Float,error: Expression Float)
****** comp fails at level 3 with expression: ******
error in function simpson 
(SEQ (|:=| (|:| |a| (|Float|)) | << | (|lo| (|segment| |sbf|)) | >> |) (|:=| (|:| |b| (|Float|)) (|hi| (|segment| |sbf|))) (|:=| (|:| |x| (|Expression| (|Float|))) (|::| (|variable| |sbf|) (|Expression| (|Float|)))) (|:| |h| (|Float|)) (|:| |k| (|Integer|)) (|:| |n| (|Integer|)) (|:| |simps| (|Expression| (|Float|))) (|:| |newsimps| (|Expression| (|Float|))) (|:| |oe| (|Expression| (|Float|))) (|:| |ne| (|Expression| (|Float|))) (|:| |err| (|Expression| (|Float|))) (|:=| (|:| |sumend| (|Expression| (|Float|))) (+ (|eval| |func| |x| (|::| |a| (|Expression| (|Float|)))) (|eval| |func| |x| (|::| |b| (|Expression| (|Float|)))))) (|:=| (|:| |sumodd| (|Expression| (|Float|))) (|::| ((|Sel| (|Float|) |float|) 0 0 10) (|Expression| (|Float|)))) (|:=| (|:| |sumeven| (|Expression| (|Float|))) (|::| ((|Sel| (|Float|) |float|) 0 0 10) (|Expression| (|Float|)))) (|:=| |n| 2) (|:=| |h| (/ (- |b| |a|) |n|)) (|:=| |sumeven| (+ |sumeven| |sumodd|)) (|:=| |sumodd| (|::| ((|Sel| (|Float|) |float|) 0 0 10) (|Expression| (|Float|)))) (REPEAT (INBY |k| (SEGMENT 1 (- |n| 1)) 2) (|:=| |sumodd| (+ |sumodd| (|eval| |func| |x| (|::| (+ (* |k| |h|) |a|) (|Expression| (|Float|))))))) (|:=| |simps| (* (+ (+ |sumend| (* ((|Sel| (|Float|) |float|) 2 0 10) |sumeven|)) (* ((|Sel| (|Float|) |float|) 4 0 10) |sumodd|)) (/ |h| ((|Sel| (|Float|) |float|) 3 0 10)))) (|:=| |n| (* |n| 2)) (|:=| |h| (/ (- |b| |a|) |n|)) (|:=| |sumeven| (+ |sumeven| |sumodd|)) (|:=| |sumodd| (|::| ((|Sel| (|Float|) |float|) 0 0 10) (|Expression| (|Float|)))) (REPEAT (INBY |k| (SEGMENT 1 (- |n| 1)) 2) (|:=| |sumodd| (+ |sumodd| (|eval| |func| |x| (|::| (+ (* |k| |h|) |a|) (|Expression| (|Float|))))))) (|:=| |newsimps| (* (+ (+ |sumend| (* ((|Sel| (|Float|) |float|) 2 0 10) |sumeven|)) (* ((|Sel| (|Float|) |float|) 4 0 10) |sumodd|)) (/ |h| ((|Sel| (|Float|) |float|) 3 0 10)))) (|:=| |oe| (|abs| (- |newsimps| |simps|))) (|:=| |simps| |newsimps|) (REPEAT (WHILE |true|) (SEQ (|:=| |n| (* |n| 2)) (|:=| |h| (/ (- |b| |a|) |n|)) (|:=| |sumeven| (+ |sumeven| |sumodd|)) (|:=| |sumodd| (|::| ((|Sel| (|Float|) |float|) 0 0 10) (|Expression| (|Float|)))) (REPEAT (INBY |k| (SEGMENT 1 (- |n| 1)) 2) (|:=| |sumodd| (+ |sumodd| (|eval| |func| |x| (|::| (+ (* |k| |h|) |a|) (|Expression| (|Float|))))))) (|:=| |newsimps| (* (+ (+ |sumend| (* ((|Sel| (|Float|) |float|) 2 0 10) |sumeven|)) (* ((|Sel| (|Float|) |float|) 4 0 10) |sumodd|)) (/ |h| ((|Sel| (|Float|) |float|) 3 0 10)))) (|:=| |ne| (|abs| (- |newsimps| |simps|))) (SEQ (|:=| (|:| #1=#:G671 (|Boolean|)) (< |ne| (* |oe| ((|Sel| (|Float|) |float|) 2 0 10)))) (|exit| 1 (IF #1# (SEQ (|:=| (|:| #2=#:G672 (|Boolean|)) (< |oe| (* |ne| ((|Sel| (|Float|) |float|) 165 -1 10)))) (|exit| 1 (IF #2# (|:=| |err| (/ |ne| (- (/ |oe| |ne|) (|::| ((|Sel| (|Float|) |float|) 1 0 10) (|Expression| (|Float|)))))) (|:=| |err| |ne|)))) (|:=| |err| |ne|)))) (|:=| |oe| |ne|) (|:=| |simps| |newsimps|) (|exit| 1 (IF (< |err| |tol|) (|leave| 1 |$NoValue|) |noBranch|)))) (|exit| 1 (|construct| |newsimps| |err|))) ****** level 3 ****** $x:= (lo (segment sbf)) $m:= $EmptyMode $f:= ((((|a| #) (|tol| # #) (|sbf| # #) (|func| # #) ...)))
>> Apparent user error: NoValueMode is an unknown mode

This simpson() function overloads the already existing function and either may be used. To see available simpson() functions, do:

fricas
)display op simpson
There is one exposed function called simpson : [1] ((D3 -> D3),D3,D3,D3,D3,Integer,Integer) -> Record(value: D3, error: D3,totalpts: Integer,success: Boolean) from NumericalQuadrature(D3) if D3 has FPS

To compute an integral using Simpson's rule, pass an expression and a BindingSegment? with the limits. Optionally, you may include a third argument to specify the acceptable error.

The exact integral:

fricas
integrate( sin(x), x=0..1 ) :: Expression Float

\label{eq1}0.4596976941 \<u> 318602826(1)
Type: Expression(Float)

Our approximations:

fricas
simpson( sin(x), x=0..1 )
There are no library operations named simpson having 2 argument(s) though there are 1 exposed operation(s) and 0 unexposed operation(s) having a different number of arguments. Use HyperDoc Browse, or issue )what op simpson to learn what operations contain " simpson " in their names, or issue )display op simpson to learn more about the available operations.
Cannot find a definition or applicable library operation named simpson with argument type(s) Expression(Integer) SegmentBinding(NonNegativeInteger)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.