|
|
|
last edited 6 years ago by test1 |
| 1 2 3 4 5 | ||
|
Editor: page
Time: 2007/11/13 00:14:51 GMT-8 |
||
| Note: transferred from axiom-developer.org | ||
changed: - This routine provides Simpson's method for numerical integration. Although Axiom already provides a Simpson's method, this version has a syntax that will be intuitive to anyone who has used the integrate() function. \begin{spad} )abbrev package SIMPINT SimpsonIntegration SimpsonIntegration(): Exports == Implementation where F ==> Float SF ==> Segment F EF ==> Expression F SBF ==> SegmentBinding F Ans ==> Record(value:EF, error:EF) Exports ==> with simpson : (EF,SBF,EF) -> Ans simpson : (EF,SBF) -> Ans Implementation ==> add simpson(func:EF, sbf:SBF, tol:EF) == a : F := lo(segment(sbf)) b : F := hi(segment(sbf)) x : EF := variable(sbf) :: EF h : F k : Integer n : Integer simps : EF newsimps : EF oe : EF ne : EF err : EF sumend : EF := eval(func, x, a::EF) + eval(func, x, b::EF) sumodd : EF := 0.0 :: EF sumeven : EF := 0.0 :: EF -- First base case -- 2 intervals ---------------- n := 2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF ) simps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0) -- Second base case -- 4 intervals --------------- n := n*2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF ) newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0) oe := abs(newsimps-simps) -- old error simps := newsimps -- general case ----------------------------------- while true repeat n := n*2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF ) newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0) -- This is a check of Richardson's error estimate. -- Usually p is approximately 4 for Simpson's rule, but -- occasionally convergence is slower ne := abs( newsimps - simps ) -- new error if ( (ne<oe*2.0) and (oe<ne*16.5) ) then -- Richardson should be ok -- p := log(oe/ne)/log(2.0) err := ne/(oe/ne-1.0::EF) -- ne/(2^p-1) else err := ne -- otherwise estimate crudely oe := ne simps := newsimps if( err < tol ) then break [ newsimps, err ] simpson(func:EF, sbf:SBF) == simpson( func, sbf, 1.e-6::EF ) \end{spad} This simpson() function overloads the already existing function and either may be used. To see available simpson() functions, do: \begin{axiom} )display op simpson \end{axiom} To compute an integral using Simpson's rule, pass an expression and a BindingSegment with the limits. Optionally, you may include a third argument to specify the acceptable error. The exact integral: \begin{axiom} integrate( sin(x), x=0..1 ) :: Expression Float \end{axiom} Our approximations: \begin{axiom} simpson( sin(x), x=0..1 ) simpson( sin(x), x=0..1, 1.e-10 ) \end{axiom}
This routine provides Simpson's method for numerical integration. Although Axiom already provides a Simpson's method, this version has a syntax that will be intuitive to anyone who has used the integrate() function.
)abbrev package SIMPINT SimpsonIntegration SimpsonIntegration(): Exports == Implementation where F ==> Float SF ==> Segment F EF ==> Expression F SBF ==> SegmentBinding F Ans ==> Record(value:EF, error:EF)
Exports ==> with simpson : (EF,SBF,EF) -> Ans simpson : (EF,SBF) -> Ans
Implementation ==> add simpson(func:EF, sbf:SBF, tol:EF) == a : F := lo(segment(sbf)) b : F := hi(segment(sbf)) x : EF := variable(sbf) :: EF
h : F k : Integer n : Integer
simps : EF newsimps : EF
oe : EF ne : EF err : EF
sumend : EF := eval(func, x, a::EF) + eval(func, x, b::EF) sumodd : EF := 0.0 :: EF sumeven : EF := 0.0 :: EF
-- First base case -- 2 intervals ---------------- n := 2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
simps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
-- Second base case -- 4 intervals --------------- n := n*2 h := (b-a)/n sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
oe := abs(newsimps-simps) -- old error simps := newsimps
-- general case ----------------------------------- while true repeat n := n*2 h := (b-a)/n
sumeven := sumeven + sumodd sumodd := 0.0 :: EF
for k in 1..(n-1) by 2 repeat sumodd := sumodd + eval( func, x, (k*h+a)::EF )
newsimps := ( sumend + 2.0*sumeven + 4.0*sumodd )*(h/3.0)
-- This is a check of Richardson's error estimate. -- Usually p is approximately 4 for Simpson's rule, but -- occasionally convergence is slower
ne := abs( newsimps - simps ) -- new error
if ( (ne<oe*2.0) and (oe<ne*16.5) ) then -- Richardson should be ok -- p := log(oe/ne)/log(2.0) err := ne/(oe/ne-1.0::EF) -- ne/(2^p-1) else err := ne -- otherwise estimate crudely
oe := ne simps := newsimps
if( err < tol ) then break
[ newsimps, err ]
simpson(func:EF, sbf:SBF) == simpson( func, sbf, 1.e-6::EF )
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/1602341404191315960-25px001.spad using
old system compiler.
SIMPINT abbreviates package SimpsonIntegration
processing macro definition F ==> Float
processing macro definition SF ==> Segment Float
processing macro definition EF ==> Expression Float
processing macro definition SBF ==> SegmentBinding Float
processing macro definition Ans ==> Record(value: Expression Float,error: Expression Float)
processing macro definition Exports ==> -- the constructor category
processing macro definition Implementation ==> -- the constructor capsule
------------------------------------------------------------------------
initializing NRLIB SIMPINT for SimpsonIntegration
compiling into NRLIB SIMPINT
compiling exported simpson : (Expression Float,SegmentBinding Float,Expression Float) -> Record(value: Expression Float,error: Expression Float)
****** comp fails at level 5 with expression: ******
error in function simpson
(SEQ
(LET |n|
(* |n| 2))
(LET |h|
(/ (- |b| |a|) |n|))
(LET |sumeven|
(+ |sumeven| |sumodd|))
(LET |sumodd|
(|::| ((|elt| (|Float|) |float|) 0 0 10) (|Expression| (|Float|))))
(REPEAT (STEP |k| 1 2 (- |n| 1))
(LET |sumodd|
(+ |sumodd|
(|eval| |func| |x|
(|::| (+ (* |k| |h|) |a|) (|Expression| (|Float|)))))))
(LET |newsimps|
(*
(+ (+ |sumend| (* ((|elt| (|Float|) |float|) 2 0 10) |sumeven|))
(* ((|elt| (|Float|) |float|) 4 0 10) |sumodd|))
(/ |h| ((|elt| (|Float|) |float|) 3 0 10))))
(LET |ne|
(|abs| (- |newsimps| |simps|)))
(SEQ
(LET #1=#:G718
(< | << ne >> | (* |oe| ((|elt| (|Float|) |float|) 2 0 10))))
(|exit| 1
(IF #1#
(SEQ
(LET #2=#:G719
(< |oe| (* |ne| ((|elt| (|Float|) |float|) 165 -1 10))))
(|exit| 1
(IF #2#
(LET |err|
(/ |ne|
(- (/ |oe| |ne|)
(|::| ((|elt| (|Float|) |float|) 1 0 10)
(|Expression| (|Float|))))))
(LET |err|
|ne|))))
(LET |err|
|ne|))))
(LET |oe|
|ne|)
(LET |simps|
|newsimps|)
(|exit| 1
(IF (< |err| |tol|)
(|leave| 1 |$NoValue|)
|noBranch|)))
****** level 5 ******
$x:= ne
$m:= (Float)
$f:=
((((|ne| # #) (|newsimps| # # #) (|sumodd| # # # ...) (|k| # #) ...)))
>> Apparent user error:
Cannot coerce ne
of mode (Expression (Float))
to mode (Boolean)This simpson() function overloads the already existing function and either may be used. To see available simpson() functions, do:
)display op simpson
There is one exposed function called simpson : [1] ((Float -> Float),Float,Float,Float,Float,Integer,Integer) -> Record(value: Float,error: Float,totalpts: Integer,success: Boolean) from NumericalQuadrature
To compute an integral using Simpson's rule, pass an expression and a BindingSegment? with the limits. Optionally, you may include a third argument to specify the acceptable error.
The exact integral:
integrate( sin(x), x=0..1 ) :: Expression Float
| (1) |
Type: Expression(Float)
Our approximations:
simpson( sin(x), x=0..1 )
There are no library operations named simpson having 2 argument(s) though there are 1 exposed operation(s) and 0 unexposed operation(s) having a different number of arguments. Use HyperDoc Browse, or issue )what op simpson to learn what operations contain " simpson " in their names, or issue )display op simpson to learn more about the available operations.
Cannot find a definition or applicable library operation named simpson with argument type(s) Expression(Integer) SegmentBinding(NonNegativeInteger)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. simpson( sin(x), x=0..1, 1.e-10 )
There are no library operations named simpson having 3 argument(s) though there are 1 exposed operation(s) and 0 unexposed operation(s) having a different number of arguments. Use HyperDoc Browse, or issue )what op simpson to learn what operations contain " simpson " in their names, or issue )display op simpson to learn more about the available operations.
Cannot find a definition or applicable library operation named simpson with argument type(s) Expression(Integer) SegmentBinding(NonNegativeInteger) Float
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.