fricas
(1) -> OF ==> OutputForm
Type: Void
fricas
R ==> Record(OUTPUTFORM:OF, SEXPRESSION: SExpression, TEXFORMAT:TexFormat)
Type: Void
fricas
e x ==> (print(([x::OF, (x::OF) pretend SExpression, x::OF::TexFormat]$R)::OF);x)
Type: Void
fricas
)set output algebra on
a: OF := "a"::Symbol::OF
(4) a
fricas
aa: OF := "aa"::Symbol::OF
(5) aa
fricas
b: OF := "b"::Symbol::OF
(6) b
fricas
bb: OF := "bb"::Symbol::OF
(7) bb
There are parentheses missing in the algebra output.
fricas
e((a+b) rem (aa*bb))
[OUTPUTFORM = (a + b) rem aa bb, SEXPRESSION = (rem (+ a b) (* aa bb)),
TEXFORMAT
=
["$$", "rem ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"]
]
(8) (a + b) rem aa bb
fricas
e((a+b) quo (aa*bb))
[OUTPUTFORM = (a + b) quo aa bb, SEXPRESSION = (quo (+ a b) (* aa bb)),
TEXFORMAT
=
["$$", "quo ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"]
]
(9) (a + b) quo aa bb
fricas
e((a+b) exquo (aa*bb))
[OUTPUTFORM = (a + b) exquo aa bb, SEXPRESSION = (exquo (+ a b) (* aa bb)),
TEXFORMAT
=
["$$", "exquo ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"]
]
(10) (a + b) exquo aa bb
fricas
differentiate(a+b, 1)
,
(11) a + b
fricas
differentiate(a*b, 2)
,,
(12) a b
fricas
prime(a+b, 4)
,,,,
(13) a + b
fricas
super(aa+bb, a+b)
a + b
(14) aa + bb