| fricas (1) -> Z==>Integer; Q==>Fraction Z Type: Void fricas z: Symbol := 'z; P==>UnivariatePolynomial(z, Type: Void fricas t:P := monomial(1, 
 Type: UnivariatePolynomial(z, fricas p:P := (1-t)*(1-t^2)*(1-t^3) 
 Type: UnivariatePolynomial(z, fricas L==>UnivariateLaurentSeries(Q, Type: Void fricas R ==> Record(k: Z, Type: Void fricas l: List R := reverse [[degree m, 
 Type: List(Record(k: Integer, fricas series(l)$L 
 fricas l1: List R := [[n, 
 Type: List(Record(k: Integer, fricas series(l1)$L 
 It seems weird that the resulting series is aborted at a non-existing coefficient in the input list. fricas l2: List R := [[n, 
 Type: List(Record(k: Integer, fricas series(l2)$L 
 There is obviously also a bug here, because the zero coefficient should have been removed. I would, however, accept such a result if the specification of series were made precise as to rely on the input stream not to contain zero coefficients. fricas S ==> SparseUnivariateLaurentSeries(Q, Type: Void fricas series(l)$S 
 fricas series(l1)$S 
 fricas series(l2)$S 
 | 


![\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 0}, \:{c = 1}\right]}, \:{\left[{k = 1}, \:{c = - 1}\right]}, \:{\left[{k = 2}, \:{c = - 1}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 4}, \:{c = 1}\right]}, \:{\left[{k = 5}, \:{c = 1}\right]}, \:{\left[{k = 6}, \:{c = - 1}\right]}\right] 
 
\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 0}, \:{c = 1}\right]}, \:{\left[{k = 1}, \:{c = - 1}\right]}, \:{\left[{k = 2}, \:{c = - 1}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 4}, \:{c = 1}\right]}, \:{\left[{k = 5}, \:{c = 1}\right]}, \:{\left[{k = 6}, \:{c = - 1}\right]}\right]](images/6525160915666977928-16.0px.png)

![\label{eq5}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 1}, \:{c = 1}\right]}, \:{\left[{k = 2}, \:{c = 2}\right]}, \:{\left[{k = 3}, \:{c = 3}\right]}, \:{\left[{k = 4}, \:{c = 4}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 5}, \:{c = 0}\right]}, \:{\left[{k = 6}, \:{c = 6}\right]}, \:{\left[{k = 7}, \:{c = 7}\right]}\right] 
 
\label{eq5}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 1}, \:{c = 1}\right]}, \:{\left[{k = 2}, \:{c = 2}\right]}, \:{\left[{k = 3}, \:{c = 3}\right]}, \:{\left[{k = 4}, \:{c = 4}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 5}, \:{c = 0}\right]}, \:{\left[{k = 6}, \:{c = 6}\right]}, \:{\left[{k = 7}, \:{c = 7}\right]}\right]](images/7521587284141078238-16.0px.png)

![\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 1}, \:{c = 1}\right]}, \:{\left[{k = 2}, \:{c = 2}\right]}, \:{\left[{k = 3}, \:{c = 3}\right]}, \:{\left[{k = 4}, \:{c = 4}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 6}, \:{c = 6}\right]}, \:{\left[{k = 7}, \:{c = 7}\right]}\right] 
 
\label{eq7}\begin{array}{@{}l}
\displaystyle
\left[{\left[{k = 1}, \:{c = 1}\right]}, \:{\left[{k = 2}, \:{c = 2}\right]}, \:{\left[{k = 3}, \:{c = 3}\right]}, \:{\left[{k = 4}, \:{c = 4}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{k = 6}, \:{c = 6}\right]}, \:{\left[{k = 7}, \:{c = 7}\right]}\right]](images/7352556098829288517-16.0px.png)



