Date: Fri, 15 May 2009 21:03:00 +0200 Franz Lehner wrote: Attached is a prototype for tensor products. It is free modules over commutative rings. TensorProduct? is now included with FriCAS. Thank you Franz! fricas M:=FreeModule(Integer,
Type: Type
fricas N:=FreeModule(Integer,
Type: Type
fricas a1:='a1::M
Type: FreeModule(Integer,
fricas a2:='a2::M
Type: FreeModule(Integer,
fricas b1:='b1::N
Type: FreeModule(Integer,
fricas b2:='b2::N
Type: FreeModule(Integer,
fricas MxN:=TensorProduct(Integer, Type: Type
fricas t := tensor(a1 + a2, fricas t
fricas leadingMonomial t
fricas numberOfMonomials t
Type: PositiveInteger?
Demonstrating the axioms of the tensor product: fricas x:M Type: Void
fricas y:M Type: Void
fricas u:M Type: Void
fricas p:=2*x+3*u
Type: FreeModule(Integer,
fricas q:=5*x+7*y+11*u
Type: FreeModule(Integer,
fricas MxM:=TensorProduct(Integer, Type: Type
fricas r := tensor(p,
fricas w:= 13*y+17*y+19*u
Type: FreeModule(Integer,
fricas test( tensor(p + q,
Type: Boolean
fricas test( tensor(p,
Type: Boolean
fricas test( tensor(p,
Type: Boolean
fricas test( tensor(23*p,
Type: Boolean
first example of a bialgebra --Bill Page, Wed, 13 May 2009 08:06:57 -0700 reply SandBoxHopfAlgebra
TensorProduct? is now included with FriCAS. Thank you Franz! |