On Date: Thu, 14 May 2009 21:46:06 +0200 Franz Lehner wrote:
Attached is a prototype for tensor products.
It is free modules over commutative rings.
There seems to be some confusion with free modules.
FreeModule? is defined in poly.spad with a local category.
FreeModuleCat? is defined in xpoly.spad.
FreeModule1? is of category FreeModuleCat?,
its Rep however is FreeModule?.
spad
)abbrev category TENSORC TensorProductCategory
TensorProductCategory(R:CommutativeRing, M : Module(R), N : Module(R)):Category == Module(R) with
product: (M, N) -> %
)abbrev category TENSORP TensorProductProperty
TensorProductProperty(R:CommutativeRing, M : Module(R), N : Module(R), _
MxN : TensorProductCategory(R, M, N), S : Module(R)): Category == with
eval: (MxN, (M, N) -> S) -> S
)abbrev package TENSORD TensorProduct
TensorProduct(R:CommutativeRing, B1:SetCategory, B2:SetCategory,M1:FreeModuleCat(R,B1),M2:FreeModuleCat(R,B2)): TPcat == TPimp where
TPcat == Join(TensorProductCategory(R,M1,M2),FreeModuleCat(R,Product(B1,B2)))
TERM1 == Record(k: B1, c: R)
TERM2 == Record(k: B2, c: R)
B1xB2 == Product(B1,B2)
TERM == Record(k: B1xB2, c: R)
TPimp == FreeModule1(R,Product(M1,M2)) add
-- Representation
-- Rep == FreeModule1(R,Product(M1,M2))
Rep == List TERM
import Rep, TERM1, TERM2, TERM, B1xB2
-- One should expect the following 3 functions to be inherited from FreeModule1
-- but there are problems if these are omitted.
outTerm(r:R, s:B1xB2):OutputForm ==
r=1 => s::OutputForm
r::OutputForm * s::OutputForm
coerce(a:%):OutputForm ==
empty? (a pretend Rep) => (0$R)::OutputForm
reduce(_+, reverse_! [outTerm(t.c, t.k) for t in (a pretend Rep)])$List(OutputForm)
leadingMonomial(x:%):B1xB2 == (x pretend Rep).first.k
product(x1:M1,x2:M2):% ==
zero? x1 or zero? x2 => return 0
x1l:List TERM1 := ListOfTerms x1
x2l:List TERM2 := ListOfTerms x2
res:List Rep := [[[makeprod(s1.k,s2.k),s1.c*s2.c ] for s2 in x2l] for s1 in x1l]
(reduce(concat,res)) pretend %
spad
Compiling FriCAS source code from file
/var/zope2/var/LatexWiki/4415200928774662710-25px001.spad using
old system compiler.
TENSORC abbreviates category TensorProductCategory
------------------------------------------------------------------------
initializing NRLIB TENSORC for TensorProductCategory
compiling into NRLIB TENSORC
;;; *** |TensorProductCategory| REDEFINED
Time: 0 SEC.
finalizing NRLIB TENSORC
Processing TensorProductCategory for Browser database:
--->-->TensorProductCategory((product (% M N))): Not documented!!!!
--->-->TensorProductCategory(constructor): Not documented!!!!
--->-->TensorProductCategory(): Missing Description
------------------------------------------------------------------------
TensorProductCategory is now explicitly exposed in frame initial
TensorProductCategory will be automatically loaded when needed from
/var/zope2/var/LatexWiki/TENSORC.NRLIB/code
TENSORP abbreviates category TensorProductProperty
------------------------------------------------------------------------
initializing NRLIB TENSORP for TensorProductProperty
compiling into NRLIB TENSORP
;;; *** |TensorProductProperty| REDEFINED
Time: 0 SEC.
finalizing NRLIB TENSORP
Processing TensorProductProperty for Browser database:
--->-->TensorProductProperty((eval (S MxN (Mapping S M N)))): Not documented!!!!
--->-->TensorProductProperty(constructor): Not documented!!!!
--->-->TensorProductProperty(): Missing Description
------------------------------------------------------------------------
TensorProductProperty is now explicitly exposed in frame initial
TensorProductProperty will be automatically loaded when needed from
/var/zope2/var/LatexWiki/TENSORP.NRLIB/code
TENSORD abbreviates package TensorProduct
------------------------------------------------------------------------
initializing NRLIB TENSORD for TensorProduct
compiling into NRLIB TENSORD
importing List Record(k: Product(B1,B2),c: R)
importing Record(k: B1,c: R)
importing Record(k: B2,c: R)
importing Record(k: Product(B1,B2),c: R)
importing Product(B1,B2)
compiling local outTerm : (R,Product(B1,B2)) -> OutputForm
Time: 0.02 SEC.
compiling exported coerce : $ -> OutputForm
Time: 0.07 SEC.
compiling exported leadingMonomial : $ -> Product(B1,B2)
Time: 0.01 SEC.
compiling exported product : (M1,M2) -> $
Time: 0.11 SEC.
(time taken in buildFunctor: 0)
;;; *** |TensorProduct| REDEFINED
;;; *** |TensorProduct| REDEFINED
Time: 0 SEC.
Warnings:
[1] not known that (OrderedSet) is of mode (CATEGORY domain (IF (has M1 (Finite)) (IF (has M2 (Finite)) (ATTRIBUTE (Finite)) noBranch) noBranch) (IF (has M1 (Monoid)) (IF (has M2 (Monoid)) (ATTRIBUTE (Monoid)) noBranch) noBranch) (IF (has M1 (AbelianMonoid)) (IF (has M2 (AbelianMonoid)) (ATTRIBUTE (AbelianMonoid)) noBranch) noBranch) (IF (has M1 (CancellationAbelianMonoid)) (IF (has M2 (CancellationAbelianMonoid)) (ATTRIBUTE (CancellationAbelianMonoid)) noBranch) noBranch) (IF (has M1 (Group)) (IF (has M2 (Group)) (ATTRIBUTE (Group)) noBranch) noBranch) (IF (has M1 (AbelianGroup)) (IF (has M2 (AbelianGroup)) (ATTRIBUTE (AbelianGroup)) noBranch) noBranch) (IF (has M1 (OrderedAbelianMonoidSup)) (IF (has M2 (OrderedAbelianMonoidSup)) (ATTRIBUTE (OrderedAbelianMonoidSup)) noBranch) noBranch) (IF (has M1 (OrderedSet)) (IF (has M2 (OrderedSet)) (ATTRIBUTE (OrderedSet)) noBranch) noBranch) (SIGNATURE makeprod ($ M1 M2)) (SIGNATURE selectfirst (M1 $)) (SIGNATURE selectsecond (M2 $)))
Cumulative Statistics for Constructor TensorProduct
Time: 0.21 seconds
--------------non extending category----------------------
.. TensorProduct(#1,#2,#3,#4,#5) of cat
(|Join| (|TensorProductCategory| |#1| |#4| |#5|)
(|FreeModuleCat| |#1| (|Product| |#2| |#3|))) has no
(|FreeModuleCat| |#1| (|Product| |#4| |#5|)) finalizing NRLIB TENSORD
Processing TensorProduct for Browser database:
--->-->TensorProduct(): Missing Description
------------------------------------------------------------------------
TensorProduct is now explicitly exposed in frame initial
TensorProduct will be automatically loaded when needed from
/var/zope2/var/LatexWiki/TENSORD.NRLIB/code
axiom
M:=FreeModule1(Integer,Symbol)
Type: Domain
axiom
N:=FreeModule1(Integer,Symbol)
Type: Domain
axiom
a1:='a1::M
Type: FreeModule1
?(Integer,Symbol)
axiom
a2:='a2::M
Type: FreeModule1
?(Integer,Symbol)
axiom
b1:='b1::N
Type: FreeModule1
?(Integer,Symbol)
axiom
b2:='b2::N
Type: FreeModule1
?(Integer,Symbol)
axiom
MxN:=TensorProduct(Integer,Symbol,Symbol,M,N);
Type: Domain
axiom
t:=product(a1+a2,b1+b2)$MxN;
Type: TensorProduct
?(Integer,Symbol,Symbol,FreeModule1
?(Integer,Symbol),FreeModule1
?(Integer,Symbol))
axiom
t
Type: TensorProduct
?(Integer,Symbol,Symbol,FreeModule1
?(Integer,Symbol),FreeModule1
?(Integer,Symbol))
The code seems to work partially, at least elements are created,
but most of the other functions are not accessible. Eq:
axiom
leadingMonomial t
Type: Product(Symbol,Symbol)
axiom
numberOfMonomials t
The last output shows that t was really created and the above errors
are due to malfunction of the inheritance mechanism.
Questions:
- The missing functions are probably due to the mixup of categories.
Why does the compiler not complain?
- Is there a way to extract the basis automatically from FreeModule??
Typing TensorProduct?(R,B1,B2,M,N) every time is tedious.
That would need functions returning domains I guess.
- Is it difficult to implement a rep/per mechanism?
The current magic is rather mysterious,
moreover the error messages of the compiler are somewhat cryptic.
I had a hard time interpreting the message:
>> Apparent user error:
NoValueMode
is an unknown mode
before I split::
reduce(concat,[[[makeprod(s1.k,s2.k),s1.c*s2.c ]@TERM for s2 in x2l] for s1 in x1l]) pretend %
into two lines::
res:List Rep := [[[makeprod(s1.k,s2.k),s1.c*s2.c ]@TERM for s2 in x2l] for s1 in x1l]
(reduce(concat,res)) pretend %
- After TensorProduct? ... == FreeModule1?(R,Product(M1,M2)) add ...,
is it better to use:
Rep == FreeModule1(R,Product(M1,M2))
or rather::
Rep == List TERM
as I did?