login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxSum revision 9 of 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Editor: Bill Page
Time: 2008/08/28 17:55:09 GMT-7
Note: CoTuple

changed:
-       selectsum(x:%) == rep(x)
-       in1(a:A):%   == per [a]
-       in2(b:B): % == per [b]
       selectsum(x) == rep(x)
       in1(a) == per [a]
       in2(b) == per [b]

changed:
-                   rep(x) case acomp and rep(x).acomp=1$A and rep(y) case bcomp => y
                   x=1 => y
                   y=1 => x

changed:
-                   rep(x) case acomp and x=0 and rep(y) case bcomp => y
-                   rep(x) case bcomp and y=0 and rep(y) case acomp => x
                   x=0 => y
                   y=0 => x

changed:
-          - x ==
          -x ==

changed:
-                   rep(x) case acomp and x=0 and rep(y) case bcomp => - y
-                   rep(x) case bcomp and y=0 and rep(y) case acomp => x
                   x=0 => -y
                   y=0 => x

changed:
-                   rep(x) case acomp and rep(y) case bcomp => true
-                   false
-
                   rep(x) case acomp and rep(y) case bcomp

added:

The CoTuple domain constructor is intended to be the
"Categorical Dual":http://en.wikipedia.org/wiki/Dual_(category_theory)
of the "Tuple":/axiom--test--1/src/algebra/Array1Spad
domain constructor

\begin{spad}
)abbrev domain COT CoTuple
++ This domain is intended to be the categorical dual of a
++ Tuple (comma-delimited homogeneous sequence of values).
++ As such it implements an n-ary disjoint union.
CoTuple(S:Type): CoercibleTo(S) with
    inj: (NonNegativeInteger,S) -> %
      ++ inject(x,n) returns x as an element of the n-th
      ++ component of the CoTuple. CoTuples are 0-based
    ind: % -> NonNegativeInteger
      ++ index(x) returns the component number of x in the CoTuple
    if S has Monoid then Monoid
    if S has AbelianMonoid then AbelianMonoid
    if S has CancellationAbelianMonoid then CancellationAbelianMonoid
    if S has Group then Group
    if S has AbelianGroup then  AbelianGroup
    if S has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup
    if S has SetCategory then SetCategory
    if S has OrderedSet then OrderedSet
  == add
    Rep == Record(ind : NonNegativeInteger, elt : S)
    --declarations
    x,y: %
    s: S
    i: NonNegativeInteger
    p: NonNegativeInteger
    c: PositiveInteger
    d: Integer

    coerce(x:%):S == rep(x).elt
    inj(i,s) == per [i,s]
    ind(x) == rep(x).ind

    if S has SetCategory then
      x = y == (rep(x).ind = rep(y).ind) and (rep(x).elt = rep(y).elt)
      coerce(x : %): OutputForm == sub(coerce(rep(x).elt),coerce(rep(x).ind))
    if S has Monoid then
      -- represent unit of CoTuple(S) as 1$S of component 0
      1 == per [0,1]
      x * y ==
        rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt * rep(y).elt]
        x = 1 => y
        y = 1 => x
        error "not same type"
      x ** p == per [rep(x).ind, rep(x).elt ** p]

    if S has Group then
       inv(x) == per [rep(x).ind, inv(rep(x).elt)]

    if S has AbelianMonoid then
       -- represent zero of Sum(A,B) as 0$S
       0 == per [0,0]
       x + y ==
         rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt + rep(y).elt]
         x = 0 => y
         y = 0 => x
         error "not same type"
       c * x == per [rep(x).ind, c * rep(x).elt]

    if S has AbelianGroup then
      - x == per [rep(x).ind, -rep(x).elt]
      (x - y):% ==
        rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt - rep(y).elt]
        x = 0 => -y
        y = 0 => x
        error "not same type"

      d * x == per [rep(x).ind, d* rep(x).elt]

    if S has OrderedAbelianMonoidSup then
      sup(x,y) ==
        rep(x).ind = rep(y).ind => per [rep(x).ind, sup(rep(x).elt,rep(y).elt)]
        rep(x).ind < rep(y).ind => y
        x
    if S has OrderedSet then
      x < y ==
        rep(x).ind = rep(y).ind => rep(x).elt < rep(y).elt
        rep(x).ind < rep(y).ind
\end{spad}

\begin{axiom}
inj(1,10)
inj(1,10) < inj(2,10)
sup(inj(1,99), inj(2,10))$CoTuple(NNI)
\end{axiom}


The Sum domain constructor is intended to be the Categorical Dual of the Product domain constructor

spad
)abbrev domain SUM Sum
++ Description:
++ This domain implements direct union
Sum (A:SetCategory,B:SetCategory) : C == T
 where
  C == SetCategory  with
       if A has Finite and B has Finite then Finite
       if A has Monoid and B has Monoid then Monoid
       if A has AbelianMonoid and B has AbelianMonoid then AbelianMonoid
       if A has CancellationAbelianMonoid and
          B has CancellationAbelianMonoid then CancellationAbelianMonoid
       if A has Group  and B has Group  then  Group
       if A has AbelianGroup and B has AbelianGroup then  AbelianGroup
       if A has OrderedAbelianMonoidSup and B has OrderedAbelianMonoidSup
                                             then OrderedAbelianMonoidSup
       if A has OrderedSet and B has OrderedSet then  OrderedSet
selectsum : % -> Union(acomp:A,bcomp:B) ++ selectsum(x) \undocumented in1 : A -> % ++ makefirst(a) \undocumented in2 : B -> % ++ makesecond(b) \undocumented
T == add
--representations Rep == Union(acomp:A,bcomp:B) import Rep
--declarations x,y: % i: NonNegativeInteger p: NonNegativeInteger a: A b: B c: PositiveInteger d: Integer
--define coerce(x:%):OutputForm == rep(x) case acomp => sub(coerce(rep(x).acomp),"1") sub(coerce(rep(x).bcomp),"2") x=y == rep(x)=rep(y) selectsum(x) == rep(x) in1(a) == per [a] in2(b) == per [b]
if A has Monoid and B has Monoid then -- represent unit of Sum(A,B) as 1$A (We could use either 1$A or 1$B) 1 == per [1$A] x * y == rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp * rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp * rep(y).bcomp] -- unit of Sum(A,B)=1$A is unit for B x=1 => y y=1 => x error "not same type" x ** p == rep(x) case acomp => per [rep(x).acomp ** p] per [rep(x).bcomp ** p]
if A has Finite and B has Finite then size == size$A + size$B index(n) == n > size$B => per [index((n::Integer - size$B)::PositiveInteger)$A] per [index(n)$B] random() == random()$Boolean => per [random()$A] per [random()$B] lookup(x) == rep(x) case acomp => (lookup(rep(x).acomp)$A::NonNegativeInteger + size$B)::PositiveInteger lookup(rep(x).bcomp)$B hash(x) == rep(x) case acomp => hash(rep(x).acomp)$A + size$B::SingleInteger hash(rep(x).bcomp)$B
if A has Group and B has Group then inv(x) == rep(x) case acomp => per [inv(rep(x).acomp)] per [inv(rep(x).bcomp)]
if A has AbelianMonoid and B has AbelianMonoid then -- represent zero of Sum(A,B) as 0$A (We could use either 0$A or 0$B) 0 == per [0$A] x + y == rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp + rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp + rep(y).bcomp] -- zero of Sum(A,B)=0$A is zero for B x=0 => y y=0 => x error "not same type" c * x == rep(x) case acomp => per [c * rep(x).acomp] per [c* rep(x).bcomp]
if A has AbelianGroup and B has AbelianGroup then -x == rep(x) case acomp => per [- rep(x).acomp] per [- rep(x).bcomp] (x - y):% == rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp - rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp - rep(y).bcomp] -- zero of Sum(A,B)=0$A is zero for B x=0 => -y y=0 => x error "not same type"
d * x == rep(x) case acomp => per [d * rep(x).acomp] per [d* rep(x).bcomp]
if A has OrderedAbelianMonoidSup and B has OrderedAbelianMonoidSup then sup(x,y) == rep(x) case acomp and rep(y) case acomp => per [sup(rep(x).acomp,rep(y).acomp)] rep(x) case bcomp and rep(y) case bcomp => per [sup(rep(x).bcomp,rep(y).bcomp)] rep(x) case acomp and rep(y) case bcomp => y x
if A has OrderedSet and B has OrderedSet then x < y == rep(x) case acomp and rep(y) case acomp => rep(x).acomp < rep(y).acomp rep(x) case bcomp and rep(y) case bcomp => rep(x).bcomp < rep(y).bcomp rep(x) case acomp and rep(y) case bcomp
spad
   Compiling OpenAxiom source code from file 
      /var/zope2/var/LatexWiki/8219446594478290117-25px001.spad using 
      Spad compiler.
   SUM abbreviates domain Sum 
------------------------------------------------------------------------
   initializing NRLIB SUM for Sum 
   compiling into NRLIB SUM 
   compiling local rep : % -> Union(acomp: A,bcomp: B)
      SUM;rep is replaced by G1424 
Time: 0.01 SEC.
compiling local per : Union(acomp: A,bcomp: B) -> % SUM;per is replaced by G1424 Time: 0 SEC.
importing Rep compiling exported coerce : % -> OutputForm Time: 0.01 SEC.
compiling exported = : (%,%) -> Boolean Time: 0 SEC.
compiling exported selectsum : % -> Union(acomp: A,bcomp: B) Time: 0 SEC.
compiling exported in1 : A -> % Time: 0 SEC.
compiling exported in2 : B -> % Time: 0 SEC.
****** Domain: A already in scope augmenting A: (Monoid) ****** Domain: B already in scope augmenting B: (Monoid) compiling exported One : () -> % Time: 0.01 SEC.
compiling exported * : (%,%) -> % Time: 0.07 SEC.
compiling exported ** : (%,NonNegativeInteger) -> % Time: 0.01 SEC.
****** Domain: A already in scope augmenting A: (Finite) ****** Domain: B already in scope augmenting B: (Finite) compiling exported size : () -> NonNegativeInteger Time: 0.01 SEC.
compiling exported index : PositiveInteger -> % Time: 0 SEC.
compiling exported random : () -> % Time: 0 SEC.
compiling exported lookup : % -> PositiveInteger Time: 0.01 SEC.
compiling exported hash : % -> SingleInteger Time: 0.01 SEC.
****** Domain: A already in scope augmenting A: (Group) ****** Domain: B already in scope augmenting B: (Group) compiling exported inv : % -> % Time: 0.01 SEC.
****** Domain: A already in scope augmenting A: (AbelianMonoid) ****** Domain: B already in scope augmenting B: (AbelianMonoid) compiling exported Zero : () -> % Time: 0 SEC.
compiling exported + : (%,%) -> % Time: 0.02 SEC.
compiling exported * : (PositiveInteger,%) -> % Time: 0.07 SEC.
****** Domain: A already in scope augmenting A: (AbelianGroup) ****** Domain: B already in scope augmenting B: (AbelianGroup) compiling exported - : % -> % Time: 0.02 SEC.
compiling exported - : (%,%) -> % Time: 0.01 SEC.
compiling exported * : (Integer,%) -> % Time: 0.01 SEC.
****** Domain: A already in scope augmenting A: (OrderedAbelianMonoidSup) ****** Domain: B already in scope augmenting B: (OrderedAbelianMonoidSup) compiling exported sup : (%,%) -> % Time: 0.02 SEC.
****** Domain: A already in scope augmenting A: (OrderedSet) ****** Domain: B already in scope augmenting B: (OrderedSet) compiling exported < : (%,%) -> Boolean Time: 0.02 SEC.
****** Domain: A already in scope augmenting A: (AbelianGroup) ****** Domain: B already in scope augmenting B: (AbelianGroup) ****** Domain: A already in scope augmenting A: (Finite) ****** Domain: B already in scope augmenting B: (Finite) ****** Domain: A already in scope augmenting A: (Group) ****** Domain: B already in scope augmenting B: (Group) ****** Domain: A already in scope augmenting A: (OrderedAbelianMonoidSup) ****** Domain: B already in scope augmenting B: (OrderedAbelianMonoidSup) ****** Domain: A already in scope augmenting A: (AbelianGroup) ****** Domain: B already in scope augmenting B: (AbelianGroup) ****** Domain: A already in scope augmenting A: (AbelianGroup) ****** Domain: B already in scope augmenting B: (AbelianGroup) ****** Domain: A already in scope augmenting A: (AbelianGroup) ****** Domain: B already in scope augmenting B: (AbelianGroup) ****** Domain: A already in scope augmenting A: (Group) ****** Domain: B already in scope augmenting B: (Group) ****** Domain: A already in scope augmenting A: (OrderedAbelianMonoidSup) ****** Domain: B already in scope augmenting B: (OrderedAbelianMonoidSup) (time taken in buildFunctor: 2)
;;; *** |Sum| REDEFINED
;;; *** |Sum| REDEFINED Time: 0.10 SEC.
Warnings: [1] coerce: acomp has no value [2] coerce: bcomp has no value [3] *: acomp has no value [4] *: bcomp has no value [5] **: acomp has no value [6] **: bcomp has no value [7] lookup: acomp has no value [8] lookup: bcomp has no value [9] hash: acomp has no value [10] hash: bcomp has no value [11] inv: acomp has no value [12] inv: bcomp has no value [13] +: acomp has no value [14] +: bcomp has no value [15] -: acomp has no value [16] -: bcomp has no value [17] sup: acomp has no value [18] sup: bcomp has no value [19] <: acomp has no value [20] <: bcomp has no value
Cumulative Statistics for Constructor Sum Time: 0.42 seconds
finalizing NRLIB SUM Processing Sum for Browser database: -- selectsum : % -> Union(acomp: A,bcomp: B) --->-->Sum((selectsum ((Union (: acomp A) (: bcomp B)) %))): Unexpected HT command: \spad "\\spad{selectsum(x)} \\undocumented" -- in1 : A -> % --->-->Sum((in1 (% A))): Improper first word in comments: makefirst "makefirst(a) \\undocumented" -- in2 : B -> % --->-->Sum((in2 (% B))): Improper first word in comments: makesecond "makesecond(\\spad{b}) \\undocumented" -- constructor ------------------------------------------------------------------------ Sum is now explicitly exposed in frame initial Sum will be automatically loaded when needed from /var/zope2/var/LatexWiki/SUM.NRLIB/code.o

axiom
size()$Sum(PF 7,PF 13)
LatexWiki Image(1)
Type: NonNegativeInteger?
axiom
size()$Sum(PF 7,Product(PF 3,PF 13))
LatexWiki Image(2)
Type: NonNegativeInteger?
axiom
in1(10)$Sum(Integer,Integer)
LatexWiki Image(3)
Type: Sum(Integer,Integer)
axiom
in1(10)$Sum(Integer,Integer) < in2(10)$Sum(Integer,Integer)
LatexWiki Image(4)
Type: Boolean
axiom
sup(in1(99)$Sum(NNI,NNI), in2(10)$Sum(NNI,NNI))
LatexWiki Image(5)
Type: Sum(NonNegativeInteger?,NonNegativeInteger?)

The CoTuple? domain constructor is intended to be the Categorical Dual of the Tuple domain constructor

spad
)abbrev domain COT CoTuple
++ This domain is intended to be the categorical dual of a
++ Tuple (comma-delimited homogeneous sequence of values).
++ As such it implements an n-ary disjoint union.
CoTuple(S:Type): CoercibleTo(S) with
    inj: (NonNegativeInteger,S) -> %
      ++ inject(x,n) returns x as an element of the n-th
      ++ component of the CoTuple. CoTuples are 0-based
    ind: % -> NonNegativeInteger
      ++ index(x) returns the component number of x in the CoTuple
    if S has Monoid then Monoid
    if S has AbelianMonoid then AbelianMonoid
    if S has CancellationAbelianMonoid then CancellationAbelianMonoid
    if S has Group then Group
    if S has AbelianGroup then  AbelianGroup
    if S has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup
    if S has SetCategory then SetCategory
    if S has OrderedSet then OrderedSet
  == add
    Rep == Record(ind : NonNegativeInteger, elt : S)
    --declarations
    x,y: %
    s: S
    i: NonNegativeInteger
    p: NonNegativeInteger
    c: PositiveInteger
    d: Integer
coerce(x:%):S == rep(x).elt inj(i,s) == per [i,s] ind(x) == rep(x).ind
if S has SetCategory then x = y == (rep(x).ind = rep(y).ind) and (rep(x).elt = rep(y).elt) coerce(x : %): OutputForm == sub(coerce(rep(x).elt),coerce(rep(x).ind)) if S has Monoid then -- represent unit of CoTuple(S) as 1$S of component 0 1 == per [0,1] x * y == rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt * rep(y).elt] x = 1 => y y = 1 => x error "not same type" x ** p == per [rep(x).ind, rep(x).elt ** p]
if S has Group then inv(x) == per [rep(x).ind, inv(rep(x).elt)]
if S has AbelianMonoid then -- represent zero of Sum(A,B) as 0$S 0 == per [0,0] x + y == rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt + rep(y).elt] x = 0 => y y = 0 => x error "not same type" c * x == per [rep(x).ind, c * rep(x).elt]
if S has AbelianGroup then - x == per [rep(x).ind, -rep(x).elt] (x - y):% == rep(x).ind = rep(y).ind => per [rep(x).ind, rep(x).elt - rep(y).elt] x = 0 => -y y = 0 => x error "not same type"
d * x == per [rep(x).ind, d* rep(x).elt]
if S has OrderedAbelianMonoidSup then sup(x,y) == rep(x).ind = rep(y).ind => per [rep(x).ind, sup(rep(x).elt,rep(y).elt)] rep(x).ind < rep(y).ind => y x if S has OrderedSet then x < y == rep(x).ind = rep(y).ind => rep(x).elt < rep(y).elt rep(x).ind < rep(y).ind
spad
   Compiling OpenAxiom source code from file 
      /var/zope2/var/LatexWiki/2899346089849641949-25px003.spad using 
      Spad compiler.
   COT abbreviates domain CoTuple 
------------------------------------------------------------------------
   initializing NRLIB COT for CoTuple 
   compiling into NRLIB COT 
   compiling local rep : % -> Record(ind: NonNegativeInteger,elt: S)
      COT;rep is replaced by G1625 
Time: 0 SEC.
compiling local per : Record(ind: NonNegativeInteger,elt: S) -> % COT;per is replaced by G1625 Time: 0 SEC.
compiling exported coerce : % -> S Time: 0.01 SEC.
compiling exported inj : (NonNegativeInteger,S) -> % Time: 0 SEC.
compiling exported ind : % -> NonNegativeInteger Time: 0 SEC.
****** Domain: S already in scope augmenting S: (SetCategory) compiling exported = : (%,%) -> Boolean Time: 0.01 SEC.
compiling exported coerce : % -> OutputForm Time: 0.02 SEC.
****** Domain: S already in scope augmenting S: (Monoid) compiling exported One : () -> % Time: 0 SEC.
compiling exported * : (%,%) -> % Time: 0.02 SEC.
compiling exported ** : (%,NonNegativeInteger) -> % Time: 0 SEC.
****** Domain: S already in scope augmenting S: (Group) compiling exported inv : % -> % Time: 0 SEC.
****** Domain: S already in scope augmenting S: (AbelianMonoid) compiling exported Zero : () -> % Time: 0.01 SEC.
compiling exported + : (%,%) -> % Time: 0.01 SEC.
compiling exported * : (PositiveInteger,%) -> % Time: 0 SEC.
****** Domain: S already in scope augmenting S: (AbelianGroup) compiling exported - : % -> % Time: 0 SEC.
compiling exported - : (%,%) -> % Time: 0.02 SEC.
compiling exported * : (Integer,%) -> % Time: 0 SEC.
****** Domain: S already in scope augmenting S: (OrderedAbelianMonoidSup) compiling exported sup : (%,%) -> % Time: 0.01 SEC.
****** Domain: S already in scope augmenting S: (OrderedSet) compiling exported < : (%,%) -> Boolean Time: 0.02 SEC.
****** Domain: S already in scope augmenting S: (AbelianMonoid) ****** Domain: S already in scope augmenting S: (AbelianGroup) ****** Domain: S already in scope augmenting S: (AbelianMonoid) ****** Domain: S already in scope augmenting S: (CancellationAbelianMonoid) ****** Domain: S already in scope augmenting S: (Group) ****** Domain: S already in scope augmenting S: (Monoid) ****** Domain: S already in scope augmenting S: (OrderedAbelianMonoidSup) ****** Domain: S already in scope augmenting S: (OrderedSet) ****** Domain: S already in scope augmenting S: (SetCategory) (time taken in buildFunctor: 1)
;;; *** |CoTuple| REDEFINED
;;; *** |CoTuple| REDEFINED Time: 0.10 SEC.
Cumulative Statistics for Constructor CoTuple Time: 0.23 seconds
finalizing NRLIB COT Processing CoTuple for Browser database: -- inj : (NonNegativeInteger,S) -> % --->-->CoTuple((inj (% (NonNegativeInteger) S))): Improper first word in comments: inject "inject(\\spad{x},{}\\spad{n}) returns \\spad{x} as an element of the \\spad{n}-th component of the CoTuple. CoTuples are 0-based" -- ind : % -> NonNegativeInteger --->-->CoTuple((ind ((NonNegativeInteger) %))): Improper first word in comments: index "index(\\spad{x}) returns the component number of \\spad{x} in the CoTuple" -- constructor --->-->CoTuple(constructor): Unexpected HT command: \indented "\\indented{1}{This domain is intended to be the categorical dual of a} Tuple (comma-delimited homogeneous sequence of values). As such it implements an \\spad{n}-ary disjoint union." ------------------------------------------------------------------------ CoTuple is now explicitly exposed in frame initial CoTuple will be automatically loaded when needed from /var/zope2/var/LatexWiki/COT.NRLIB/code.o

axiom
inj(1,10)
LatexWiki Image(6)
Type: CoTuple? PositiveInteger?
axiom
inj(1,10) < inj(2,10)
LatexWiki Image(7)
Type: Boolean
axiom
sup(inj(1,99), inj(2,10))$CoTuple(NNI)
LatexWiki Image(8)
Type: CoTuple? NonNegativeInteger?