|
|
last edited 11 years ago by test1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ||
Editor: Bill Page
Time: 2008/05/16 19:01:42 GMT-7 |
||
Note: Sum is dual to Product |
changed: - Rep := Union(acomp:A,bcomp:B) Rep == Union(acomp:A,bcomp:B) import Rep changed: - coerce(x):OutputForm == - x case acomp => (x.acomp)::OutputForm - (x.bcomp)::OutputForm - x=y == rep(x)= rep(y) coerce(x:%):OutputForm == coerce(rep(x))$Rep x=y == rep(x)=rep(y) changed: - makefirst(a:A) : % == per construct(a)$REP - makesecond (b:B) : % == per construct(b)$REP makefirst(a) == per [a] makesecond(b:B) : % == per [b] changed: - 1 == per construct(1$A)$REP 1 == per [1$A] changed: - x case acomp and y case acomp => per construct(rep(x).acomp * rep(y).acomp)$REP - x case bcomp and y case bcomp => per construct(rep(x).bcomp * rep(y).bcomp)$REP rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp * rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp * rep(y).bcomp] changed: - x case acomp and x.acomp=1$A and y case bcomp => y rep(x) case acomp and rep(x).acomp=1$A and rep(y) case bcomp => y changed: - x case acomp => per construct(rep(x).acomp ** p)$REP - per construct(rep(x).bcomp ** p)$REP rep(x) case acomp => per [rep(x).acomp ** p] per [rep(x).bcomp ** p] changed: - n > size$B => per construct(index((n::Integer - size$B)::PositiveInteger)$A)$REP - per construct(index(n)$B)$REP n > size$B => per [index((n::Integer - size$B)::PositiveInteger)$A] per [index(n)$B] changed: - random()$Boolean => per construct(random()$A)$REP - per construct(random()$B)REP random()$Boolean => per [random()$A] per [random()$B] changed: - x case acomp => per construct(inv(x.acomp))$REP - per construct(inv(x.bcomp))$REP x case acomp => per [inv(x.acomp)] per [inv(x.bcomp)] changed: - 0 == per construct(1$A)$REP 0 == per [1$A] changed: - x case acomp and y case acomp => per construct(rep(x).acomp + rep(y).acomp)$REP - x case bcomp and y case bcomp => per construct(rep(x).bcomp + rep(y).bcomp)$REP rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp + rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp + rep(y).bcomp] changed: - x case acomp and x.acomp=1$A and y case bcomp => y rep(x) case acomp and rep(x).acomp=1$A and rep(y) case bcomp => y changed: - x case acomp => per construct(c * rep(x).acomp)$REP - per construct(c* rep(x).bcomp)$REP x case acomp => per [c * rep(x).acomp] per [c* rep(x).bcomp] changed: - x case acomp and y case acomp => per construct(rep(x).acomp - rep(y).acomp)$REP - x case bcomp and y case bcomp => per construct(rep(x).bcomp - rep(y).bcomp)$REP x case acomp and y case acomp => per [rep(x).acomp - rep(y).acomp] x case bcomp and y case bcomp => per [rep(x).bcomp - rep(y).bcomp] changed: - x case acomp => per construct(d * rep(x).acomp)$REP - per construct(d* rep(x).bcomp)$REP x case acomp => per [d * rep(x).acomp] per [d* rep(x).bcomp] changed: - x case acomp and y case acomp => per construct(sup(rep(x).acomp,rep(y).acomp))$REP - x case bcomp and y case bcomp => per construct(sup(rep(x).bcomp,rep(y).bcomp))$REP x case acomp and y case acomp => per [sup(rep(x).acomp,rep(y).acomp)] x case bcomp and y case bcomp => per [sup(rep(x).bcomp,rep(y).bcomp)]
The Sum domain constructor is intended to be the CategoricalDual? of the Product domain constructor
spad)abbrev domain SUM Sum ++ Description: ++ This domain implements direct union Sum (A:SetCategory,B:SetCategory) : C == T where C == SetCategory with if A has Finite and B has Finite then Finite if A has Monoid and B has Monoid then Monoid if A has AbelianMonoid and B has AbelianMonoid then AbelianMonoid if A has CancellationAbelianMonoid and B has CancellationAbelianMonoid then CancellationAbelianMonoid if A has Group and B has Group then Group if A has AbelianGroup and B has AbelianGroup then AbelianGroup if A has OrderedAbelianMonoidSup and B has OrderedAbelianMonoidSup then OrderedAbelianMonoidSup if A has OrderedSet and B has OrderedSet then OrderedSet selectsum : % -> Union(acomp:A,bcomp:B) ++ selectsum(x) \undocumented makefirst : A -> % ++ makefirst(a) \undocumented makesecond : B -> % ++ makesecond(b) \undocumented T == add --representations Rep == Union(acomp:A,bcomp:B) import Rep --declarations x,y: % i: NonNegativeInteger p: NonNegativeInteger a: A b: B d: Integer --define coerce(x:%):OutputForm == coerce(rep(x))$Rep x=y == rep(x)=rep(y) selectsum(x:%) == rep(x) makefirst(a) == per [a] makesecond(b:B) : % == per [b] if A has Monoid and B has Monoid then -- represent unit of Sum(A,B) as 1$A (We could use either 1$A or 1$B) 1 == per [1$A] x * y == rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp * rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp * rep(y).bcomp] -- unit of Sum(A,B)=1$A is unit for B rep(x) case acomp and rep(x).acomp=1$A and rep(y) case bcomp => y error "not same type" x ** p == rep(x) case acomp => per [rep(x).acomp ** p] per [rep(x).bcomp ** p] if A has Finite and B has Finite then size == size$A + size$B index(n) == n > size$B => per [index((n::Integer - size$B)::PositiveInteger)$A] per [index(n)$B] random() == random()$Boolean => per [random()$A] per [random()$B] lookup(x) == x case acomp => lookup(x.acomp)$A + size$B::Integer lookup(x.bcomp)$B hash(x) == x case acomp => hash(x.acomp)$A + size$B::SingleInteger hash(x.bcomp)$B if A has Group and B has Group then inv(x) == x case acomp => per [inv(x.acomp)] per [inv(x.bcomp)] if A has AbelianMonoid and B has AbelianMonoid then -- represent zero of Sum(A,B) as 0$A (We could use either 0$A or 0$B) 0 == per [1$A] x + y == rep(x) case acomp and rep(y) case acomp => per [rep(x).acomp + rep(y).acomp] rep(x) case bcomp and rep(y) case bcomp => per [rep(x).bcomp + rep(y).bcomp] -- zero of Sum(A,B)=0$A is zero for B rep(x) case acomp and rep(x).acomp=1$A and rep(y) case bcomp => y error "not same type" c * x == x case acomp => per [c * rep(x).acomp] per [c* rep(x).bcomp] if A has AbelianGroup and B has AbelianGroup then - x == x case acomp => per(- rep(x).acomp) per(- rep(x).bcomp) (x - y):% == x case acomp and y case acomp => per [rep(x).acomp - rep(y).acomp] x case bcomp and y case bcomp => per [rep(x).bcomp - rep(y).bcomp] -- zero of Sum(A,B)=0$A is zero for B x case acomp and x.acomp=0$A and y case bcomp => - y x case acomp and y.bcomp=0$A and y case bcomp => y error "not same type" d * x == x case acomp => per [d * rep(x).acomp] per [d* rep(x).bcomp] if A has OrderedAbelianMonoidSup and B has OrderedAbelianMonoidSup then sup(x,y) == [sup(x.acomp,y.acomp),sup(x.bcomp,y.bcomp)] x case acomp and y case acomp => per [sup(rep(x).acomp,rep(y).acomp)] x case bcomp and y case bcomp => per [sup(rep(x).bcomp,rep(y).bcomp)] error "not same type" if A has OrderedSet and B has OrderedSet then x < y == x case acomp and y case acomp => rep(x).acomp < rep(y).acomp x case bcomp and y case bcomp => rep(x).bcomp < rep(y).bcomp error "not same type"
Compiling OpenAxiom source code from file /var/zope2/var/LatexWiki/5281484527707176322-25px001.spad using Spad compiler. SUM abbreviates domain Sum ------------------------------------------------------------------------ initializing NRLIB SUM for Sum compiling into NRLIB SUM compiling local rep : % -> Union(acomp: A,bcomp: B) SUM;rep is replaced by G1410 Time: 0.01 SEC. compiling local per : Union(acomp: A,bcomp: B) -> % SUM;per is replaced by G1410 Time: 0 SEC. importing Rep compiling exported coerce : % -> OutputForm Time: 0 SEC. compiling exported = : (%,%) -> Boolean Time: 0 SEC. compiling exported selectsum : % -> Union(acomp: A,bcomp: B) Time: 0 SEC. compiling exported makefirst : A -> % Time: 0 SEC. compiling exported makesecond : B -> % Time: 0 SEC. ****** Domain: A already in scope augmenting A: (Monoid) ****** Domain: B already in scope augmenting B: (Monoid) compiling exported One : () -> % Time: 0.01 SEC. compiling exported * : (%,%) -> % Time: 0.07 SEC. compiling exported ** : (%,NonNegativeInteger) -> % Time: 0.01 SEC. ****** Domain: A already in scope augmenting A: (Finite) ****** Domain: B already in scope augmenting B: (Finite) compiling exported size : () -> NonNegativeInteger Time: 0.01 SEC. compiling exported index : PositiveInteger -> % Time: 0 SEC. compiling exported random : () -> % Time: 0 SEC. compiling exported lookup : % -> PositiveInteger ****** comp fails at level 2 with expression: ****** error in function lookup (IF | << | (|case| |x| |acomp|) | >> | (+ ((|elt| A |lookup|) (|x| |acomp|)) (|::| (|elt| B |size|) (|Integer|))) ((|elt| B |lookup|) (|x| |bcomp|))) ****** level 2 ****** $x:= (case x acomp) $m:= (Boolean) $f:= ((((|x| # . #0=(#)) (|$Information| #) (B # . #35=(#)) (~= # . #48=(# #)) ...) ((|per| #) (|rep| #)) ((|rep| #) (|case| # . #228=(# #)) (|elt| # . #237=(# #)) (|construct| # . #242=(# #)) ...))) >> Apparent user error: acomp is an unknown mode
axiomsize()$Sum(PF 7,PF 13) Sum is an unknown constructor and so is unavailable. Did you mean to use -> but type something different instead? size()$Sum(PF 7,Product(PF 3,PF 13)) Sum is an unknown constructor and so is unavailable. Did you mean to use -> but type something different instead?