Square root
fricas
(1) -> ksqrt:=kernels(sqrt(x))(1)
Type: Kernel(Expression(Integer))
fricas
name(ksqrt)
Type: Symbol
fricas
argument(ksqrt)
Type: List(Expression(Integer))
fricas
)di op nthRoot
There is one exposed function called nthRoot :
[1] (D,Integer) -> D from D if D has RADCAT
There are 2 unexposed functions called nthRoot :
[1] (Factored(D4),NonNegativeInteger) -> Record(exponent:
NonNegativeInteger,coef: D4,radicand: List(D4))
from FactoredFunctions(D4) if D4 has INTDOM
[2] (Integer,((Integer, List(OutputForm)) -> OutputBox),((Integer,
List(OutputForm)) -> OutputBox)) -> ((Integer, List(OutputForm))
-> OutputBox)
from D if D has FMTCAT
Positive nthRoot is primmitive
fricas
nthRoot(x,3)
Type: Expression(Integer)
fricas
nthRoot(x,2)
Type: Expression(Integer)
fricas
nthRoot(x,1)
Type: Expression(Integer)
Strange library message
fricas
nthRoot(x,0)
>> Error detected within library code:
not invertible
Negative nthRoot is not primitive
fricas
nthRoot(x,-1)
Type: Expression(Integer)
fricas
nthRoot(x,-2)
Type: Expression(Integer)
fricas
nthRoot(x,-3)
Type: Expression(Integer)
fricas
msqrt:=kernels(nthRoot(x,-3))(1)
Type: Kernel(Expression(Integer))
fricas
name(msqrt)
Type: Symbol
fricas
argument(msqrt)
Type: List(Expression(Integer))
Powers are roots
fricas
psqrt:=kernels(x^(1/2))(1)
Type: Kernel(Expression(Integer))
fricas
name(psqrt)
Type: Symbol
fricas
argument(psqrt)
Type: List(Expression(Integer))
Complex roots
fricas
complexNumeric(nthRoot(complex(-1,0),2))
Type: Complex(Float)
fricas
nthRoot(%,2)
Type: Complex(Float)
fricas
recip %
Type: Union(Complex(Float),...)
fricas
complexNumeric(nthRoot(complex(-1,0),3))
Type: Complex(Float)
fricas
recip %
Type: Union(Complex(Float),...)
fricas
complexNumeric(nthRoot(complex(-1,0),4))
Type: Complex(Float)
fricas
conjugate %
Type: Complex(Float)