login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Solve revision 1 of 7

1 2 3 4 5 6 7
Editor:
Time: 2007/11/18 18:36:37 GMT-8
Note: problem formatting of output

changed:
-
Solving Equations

  What method is used to solve equation in Axiom?

\begin{axiom}
solve(sin(x)=4/5,x)
solve([a=4,sin(x)=a/5],[a,x])
\end{axiom}

In the following, a workaround is necessary because of bug #128:

\begin{axiom}
)set output algebra on
)set output tex off
solve([V_q*U_q+V_l*U_l+V_d*U_d+V_a*U_a=U_ma,               _
       V_q*rho_q+V_l*rho_l+ V_d*rho_d+V_a*rho_a=rho_ma,i   _
       V_q*t_q+V_l*t_l+V_d*t_d+V_a*t_a=t_ma,               _
       V_q+V_l+V_d+V_a=1],                                 _
      [V_q,V_l,V_d,V_a] )
)set output algebra off
)set output tex on
\end{axiom}

\begin{axiom}
solve(v^4+b*v^3+c*v^2+d=0,v)
\end{axiom}

This didn't work since 'solve' returns solutions expressible as members of the 
ground field only. Above, the ground field of $v^4+b*v^3+c*v^2+d$ defaults to
'Fraction Polynomial Integer'...

Thus, the proper call is

\begin{axiom}
solve((v^4+b*v^3+c*v^2+d)::EXPR INT=0,v)
\end{axiom}

But really, you should use 'zerosOf':

\begin{axiom}
zerosOf(v^4+b*v^3+c*v^2+d, v)
\end{axiom}

In the following, we have to do three 
things:

  - convert the list of 'Fraction Polynomial Float' to a list of
    'Fraction Polynomial Integer', since 'solve' can only handle the latter, 

  - ask for an approximate solution and

  - set precision to a lower value then 68, since it would take too much time otherwise

Furthermore, it's '%pi', not '%PI'. Finally, the underscore is the escape
character (like \\) and is also used as the the line continuation character
when it occurs at the end of th line. So 'K_sc' is equivalent to just Ksc,
but 'K__sc' is actually K_sc.

Here is one way to use macros and _ to define more complex names that
print nicely in LaTeX form:
\begin{axiom}
K_sc  ==> K___{sc_}
mu_sc ==> _\mu___{sc_}
\end{axiom}

\begin{axiom}
digits(7);
l:=  [0.01*(2.25-K_sc)*K_sc/(0.01*%pi*mu_sc*(mu_sc+3.0*K_sc)/                         _
      (4.0*mu_sc+3.0*K_sc)+2.25)+0.7*(37.0-K_sc)*(4.0*mu_sc/3.0+K_sc)/                _
      (4.0*mu_sc/3.0+37.0)+0.29*(2.25-K_sc)*(4.0*mu_sc/3.0+K_sc)/                     _
      (4.0*mu_sc/3.0+2.25),                                                           _
      -0.002*mu_sc*(2.0*(2.0*mu_sc/3.0+2.25)/                                         _
      (0.01*%pi*mu_sc*(mu_sc+3.0*K_sc)/                                               _
      (4.0*mu_sc+3.0*K_sc)+2.25)+800.0*mu_sc/                                         _
      (%pi*(2.0*mu_sc*(mu_sc+3.0*K_sc)/                                               _
      (4.0*mu_sc+3.0*K_sc)+mu_sc))+1.0)+0.7*(44.0-mu_sc)*(mu_sc*(8.0*mu_sc+9.0*K_sc)/ _
      (6.0*(2.0*mu_sc+K_sc))+mu_sc)/                                                  _
      (mu_sc*(8.0*mu_sc+9.0*K_sc)/                                                    _
      (6.0*(2.0*mu_sc+K_sc))+44.0)-1.74*(2.0*mu_sc+K_sc)*(mu_sc*(8.0*mu_sc+9.0*K_sc)/ _
      (6.0*(2.0*mu_sc+K_sc))+mu_sc)/(8.0*mu_sc+9.0*K_sc)]
-- solve exactly for fractions
a:=solve (l::LIST FRAC POLY FRAC INT::LIST FRAC POLY INT);
-- Number of results:
#a
-- But only the first one is of interest.
-- Display it as a floating point result
a.1::List Equation Fraction POLY FLOAT
-- Now check it
map(x+->subst(x,(a.1)::List Equation FRAC POLY FLOAT),l)
\end{axiom}


From unknown Fri Jun 3 06:08:15 -0500 2005
From: unknown
Date: Fri, 03 Jun 2005 06:08:15 -0500
Subject: Test
Message-ID: <20050603060815-0500@page.axiom-developer.org>

\begin{axiom}
  )clear all
\end{axiom}

\begin{axiom}
  solve((x=-1+x^2)::EQ EXPR INT,x)
\end{axiom}

quadratic equation
\begin{axiom}
solve(a*x^2+b*x+c=0,x)
\end{axiom}

\begin{axiom}
solve(a*x+b=0,x)
\end{axiom}

quadratic equation

\begin{axiom}
solve(x**2+x-1,x)
\end{axiom}

\begin{axiom}
radicalSolve(a*x**2+b*x+c=0,x)
\end{axiom}

From unknown Fri Jun 3 06:08:15 -0500 2005
From: unknown
Date: Fri, 03 Jun 2005 06:08:15 -0500
Subject: Test
Message-ID: <20050603060815-0500@page.axiom-developer.org>

This doesn't work on mine michen:
\begin{axiom}
L := [ A = 2*P1+P2, B = 2*P2+P1, C = 2*Q1+Q2, D = 2*Q2+Q1]
solve(L, [P1,P2])
\end{axiom}
But it should, observe this:
\begin{axiom}
solve([L.1,L.2],[P1,P2])
solve([L.3,L.4],[Q1,Q2])
\end{axiom}
First two equationa do not depend on $Q_i$, the later two don't depend on $P_i$.

From unknown Wed Jun 22 19:20:34 -0500 2005
From: unknown
Date: Wed, 22 Jun 2005 19:20:34 -0500
Subject: 
Message-ID: <20050622192034-0500@page.axiom-developer.org>

\begin{axiom}
)set output algebra on
)set output tex off
radicalSolve(a*x**3+b*x**2+c*x+d=0,x)
)set output algebra off
)set output tex on
\end{axiom}

From unknown Fri Jun 24 04:20:49 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 04:20:49 -0500
Subject: test
Message-ID: <20050624042049-0500@page.axiom-developer.org>

\begin{axiom}
solve(sin(x)=4/5,x)
\end{axiom}

From unknown Fri Jun 24 04:24:51 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 04:24:51 -0500
Subject: test
Message-ID: <20050624042451-0500@page.axiom-developer.org>

\begin{axiom}
  solve(x^2=y,x)
\end{axiom}

From unknown Mon Jul 4 13:54:20 -0500 2005
From: unknown
Date: Mon, 04 Jul 2005 13:54:20 -0500
Subject: test
Message-ID: <20050704135420-0500@page.axiom-developer.org>

Use braces { } not parenthesis ( )
\begin{axiom}
solve(x3=x0+(x1-x0)*t + (x2-x0) *u,u)
\end{axiom}


From unknown Tue Nov 29 04:23:52 -0600 2005
From: unknown
Date: Tue, 29 Nov 2005 04:23:52 -0600
Subject: 
Message-ID: <20051129042352-0600@page.axiom-developer.org>

\begin{axiom}
solve([x+y=3,x-y=1],[x,y])
\end{axiom}


From unknown Mon Feb 27 17:15:50 -0600 2006
From: unknown
Date: Mon, 27 Feb 2006 17:15:50 -0600
Subject: 
Message-ID: <20060227171550-0600@wiki.axiom-developer.org>

An error in the way MathAction folds the LaTeX output from
Axiom prevents this expression from displaying properly. As
a work-a-round it is necessary to disable the LaTeX output
and replace it with a ASCII text equivalent.

\begin{axiom}
)set output tex off
)set output algebra on
A:=i=(a*x+c*z+e)/(z+g)
B:=j=(b*x+d*z+f)/(z+g)
solve([A,B],[x,z])
)set output tex on
)set output algebra off
\end{axiom}


From unknown Sun Mar 5 15:26:14 -0600 2006
From: unknown
Date: Sun, 05 Mar 2006 15:26:14 -0600
Subject: 
Message-ID: <20060305152614-0600@wiki.axiom-developer.org>

\begin{axiom}
solve(sin(x)=4/5,x)
\end{axiom}

From unknown Tue May 23 08:40:27 -0500 2006
From: unknown
Date: Tue, 23 May 2006 08:40:27 -0500
Subject: 
Message-ID: <20060523084027-0500@wiki.axiom-developer.org>

\begin{axiom}
L := [ A = 2*P1+P2, B = 2*P2+P1, C = 2*Q1+Q2, D = 2*Q2+Q1]
solve(L, [P1,P2])
\end{axiom}

From test Fri Oct 20 16:51:26 -0500 2006
From: test
Date: Fri, 20 Oct 2006 16:51:26 -0500
Subject: sdf
Message-ID: <20061020165126-0500@wiki.axiom-developer.org>

\begin{axiom}
solve(14=x*1.1^x,x)
\end{axiom}

From tempo Thu Mar 15 14:15:26 -0600 2007
From: tempo
Date: Thu, 15 Mar 2007 14:15:26 -0600
Subject: --I don't know
Message-ID: <20070315141526-0600@wiki.axiom-developer.org>

\begin{axiom}
)set output algebra on
)set output tex off
zerosOf((1-a)*x^4+x^3+x^2+x+1,x)
)set output algebra off
)set output tex on
\end{axiom}

From faceinjarbydoor Tue May 22 13:53:38 -0500 2007
From: faceinjarbydoor
Date: Tue, 22 May 2007 13:53:38 -0500
Subject: test
Message-ID: <20070522135338-0500@wiki.axiom-developer.org>

\begin{axiom}
solve( dx_p = ( m / b ) * ( c0 - b * dv_p + c0 * log(c0) -     _
              c0 * log( c0 - b * dv_p ) + v0 * log(c0) -       _
              v0 * log( c0 - b * dv_p ) - ( c0 / b ) ), dv_p )
\end{axiom}

From danzat Thu Sep 20 13:26:55 -0500 2007
From: danzat
Date: Thu, 20 Sep 2007 13:26:55 -0500
Subject: test
Message-ID: <20070920132655-0500@wiki.axiom-developer.org>

\begin{axiom}
solve(((1+sqrt(5))^n-(1-sqrt(5))^n)/(sqrt(5)*2^n)=10^1001, n)
\end{axiom}


From hintzy64 Sun Oct 14 21:47:27 -0500 2007
From: hintzy64
Date: Sun, 14 Oct 2007 21:47:27 -0500
Subject: hw problem!
Message-ID: <20071014214727-0500@wiki.axiom-developer.org>

\begin{axiom}
)set output tex off
)set output algebra on
\end{axiom}

\begin{axiom}
solve([nnH+2*niH+nnCs+2*niCs = n, (niH+niCs)*niH/nnH = SH, (niH+niCs)*niCs/nnCs = SCs, (niH+nnH)/(niCs+nnCs) = alpha],[nnH, niH, nnCs, niCs])
\end{axiom}


Solving Equations

What method is used to solve equation in Axiom?

axiom
solve(sin(x)=4/5,x)
LatexWiki Image(1)
Type: List Equation Expression Integer
axiom
solve([a=4,sin(x)=a/5],[a,x])
LatexWiki Image(2)
Type: List List Equation Expression Integer

In the following, a workaround is necessary because of bug #128:

axiom
)set output algebra on
axiom
)set output tex off
solve([V_q*U_q+V_l*U_l+V_d*U_d+V_a*U_a=U_ma , _ V_q*rho_q+V_l*rho_l+ V_d*rho_d+V_a*rho_a=rho_ma,i _ V_q*t_q+V_l*t_l+V_d*t_d+V_a*t_a=t_ma, _ V_q+V_l+V_d+V_a=1], _ [V_q,V_l,V_d,V_a] )
There are no library operations named i Use HyperDoc Browse or issue )what op i to learn if there is any operation containing " i " in its name.
Cannot find a definition or applicable library operation named i with argument type(s) Variable Vq
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.
axiom
)set output algebra off
axiom
)set output tex on

axiom
solve(v^4+b*v^3+c*v^2+d=0,v)
LatexWiki Image(3)
Type: List Equation Fraction Polynomial Integer

This didn't work since solve returns solutions expressible as members of the ground field only. Above, the ground field of LatexWiki Image defaults to Fraction Polynomial Integer...

Thus, the proper call is

axiom
solve((v^4+b*v^3+c*v^2+d)::EXPR INT=0,v)
LatexWiki Image(4)
Type: List Equation Expression Integer

But really, you should use 'zerosOf':

axiom
zerosOf(v^4+b*v^3+c*v^2+d, v)
LatexWiki Image(5)
Type: List Expression Integer

In the following, we have to do three things:

  • convert the list of Fraction Polynomial Float to a list of Fraction Polynomial Integer, since solve can only handle the latter,
  • ask for an approximate solution and
  • set precision to a lower value then 68, since it would take too much time otherwise

Furthermore, it's %pi, not %PI. Finally, the underscore is the escape character (like \) and is also used as the the line continuation character when it occurs at the end of th line. So K_sc is equivalent to just Ksc, but K__sc is actually K_sc.

Here is one way to use macros and _ to define more complex names that print nicely in LaTeX? form:

axiom
K_sc  ==> K___{sc_}
Type: Void
axiom
mu_sc ==> _\mu___{sc_}
Type: Void

axiom
digits(7);
Type: PositiveInteger?
axiom
l:=  [0.01*(2.25-K_sc)*K_sc/(0.01*%pi*mu_sc*(mu_sc+3.0&
#42;K_sc)/                         _
      (4.0*mu_sc+3.0*K_sc)+2.25)+0.7*(37.0-K_sc)*(4.0*mu_sc
/3.0+K_sc)/                _
(4.0*mu_sc/3.0+37.0)+0.29*(2.25-K_sc)*(4.0*mu_sc/3.0+K_sc)/
_
      (4.0*mu_sc/3.0+2.25),
_
      -0.002*mu_sc*(2.0*(2.0*mu_sc/3.0+2.25)/
_
      (0.01*%pi*mu_sc*(mu_sc+3.0*K_sc)/
_
      (4.0*mu_sc+3.0*K_sc)+2.25)+800.0*mu_sc/
_
      (%pi*(2.0*mu_sc*(mu_sc+3.0*K_sc)/
_
      (4.0*mu_sc+3.0*K_sc)+mu_sc))+1.0)+0.7*(44.0-mu_sc)*(mu	
5;sc*(8.0*mu_sc+9.0*K_sc)/ _
      (6.0*(2.0*mu_sc+K_sc))+mu_sc)/
_
      (mu_sc*(8.0*mu_sc+9.0*K_sc)/
_
      (6.0*(2.0*mu_sc+K_sc))+44.0)-1.74*(2.0*mu_sc+K_sc)*(m
u_sc*(8.0*mu_sc+9.0*K_sc)/ _
      (6.0*(2.0*mu_sc+K_sc))+mu_sc)/(8.0*mu_sc+9.0*K_sc)]
LatexWiki Image(6)
Type: List Fraction Polynomial Float
axiom
-- solve exactly for fractions
a:=solve (l::LIST FRAC POLY FRAC INT::LIST FRAC POLY INT);
Type: List List Equation Fraction Polynomial Integer
axiom
-- Number of results:
#a
LatexWiki Image(7)
Type: PositiveInteger?
axiom
-- But only the first one is of interest.
-- Display it as a floating point result
a.1::List Equation Fraction POLY FLOAT
LatexWiki Image(8)
Type: List Equation Fraction Polynomial Float
axiom
-- Now check it
map(x+->subst(x,(a.1)::List Equation FRAC POLY FLOAT),l)
LatexWiki Image(9)
Type: List Expression Float

axiom
)clear all
All user variables and function definitions have been cleared.

axiom
solve((x=-1+x^2)::EQ EXPR INT,x)
LatexWiki Image(10)
Type: List Equation Expression Integer

quadratic equation

axiom
solve(a*x^2+b*x+c=0,x)
LatexWiki Image(11)
Type: List Equation Fraction Polynomial Integer

axiom
solve(a*x+b=0,x)
LatexWiki Image(12)
Type: List Equation Fraction Polynomial Integer

quadratic equation

axiom
solve(x**2+x-1,x)
LatexWiki Image(13)
Type: List Equation Fraction Polynomial Integer

axiom
radicalSolve(a*x**2+b*x+c=0,x)
LatexWiki Image(14)
Type: List Equation Expression Integer

This doesn't work on mine michen:
axiom
L := [ A = 2*P1+P2, B = 2*P2+P1, C = 2*Q1+Q2, D = 2*Q2+Q1]
LatexWiki Image(15)
Type: List Equation Polynomial Integer
axiom
solve(L, [P1,P2])
LatexWiki Image(16)
Type: List List Equation Fraction Polynomial Integer

But it should, observe this:

axiom
solve([L.1,L.2],[P1,P2])
LatexWiki Image(17)
Type: List List Equation Fraction Polynomial Integer
axiom
solve([L.3,L.4],[Q1,Q2])
LatexWiki Image(18)
Type: List List Equation Fraction Polynomial Integer

First two equationa do not depend on LatexWiki Image, the later two don't depend on LatexWiki Image.

axiom
)set output algebra on
axiom
)set output tex off
radicalSolve(a*x**3+b*x**2+c*x+d=0,x)
(10) [ x = 2 +---+ 2 (- 9a \|- 3 + 9a ) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ** 2 + +---+ (- 3a b\|- 3 - 3a b) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 + 2 6a c - 2b / 2 +---+ 2 (9a \|- 3 + 9a ) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ,
x = 2 +---+ 2 (- 9a \|- 3 - 9a ) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ** 2 + +---+ (- 3a b\|- 3 + 3a b) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 + 2 - 6a c + 2b / 2 +---+ 2 (9a \|- 3 - 9a ) * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ,
x = 2 9a * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ** 2 + - 3a b * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 + 2 - 3a c + b / 2 9a * ROOT +------------------------------------------+ | 2 2 3 3 2 2 3 |27a d + (- 18a b c + 4b )d + 4a c - b c 2 54a |------------------------------------------ - 27a d | 4 \| 108a + 3 9a b c - 2b / 3 54a , 3 ]
Type: List Equation Expression Integer
axiom
)set output algebra off
axiom
)set output tex on

axiom
solve(sin(x)=4/5,x)
LatexWiki Image(19)
Type: List Equation Expression Integer

axiom
solve(x^2=y,x)
LatexWiki Image(20)
Type: List Equation Fraction Polynomial Integer

Use braces { } not parenthesis ( )
axiom
solve(x3=x0+(x1-x0)*t + (x2-x0) *u,u)
LatexWiki Image(21)
Type: List Equation Fraction Polynomial Integer

axiom
solve([x+y=3,x-y=1],[x,y])
LatexWiki Image(22)
Type: List List Equation Fraction Polynomial Integer

An error in the way MathAction? folds the LaTeX? output from Axiom prevents this expression from displaying properly. As a work-a-round it is necessary to disable the LaTeX? output and replace it with a ASCII text equivalent.

axiom
)set output tex off
axiom
)set output algebra on
A:=i=(a*x+c*z+e)/(z+g)
c z + a x + e (15) i= ------------- z + g
Type: Equation Fraction Polynomial Integer
axiom
B:=j=(b*x+d*z+f)/(z+g)
d z + b x + f (16) j= ------------- z + g
Type: Equation Fraction Polynomial Integer
axiom
solve([A,B],[x,z])
(17) (c g - e)j + (- d g + f)i - c f + d e - a g j + b g i + a f - b e [[x= -------------------------------------,z= ---------------------------]] a j - b i - a d + b c a j - b i - a d + b c
Type: List List Equation Fraction Polynomial Integer
axiom
)set output tex on
axiom
)set output algebra off

axiom
solve(sin(x)=4/5,x)
LatexWiki Image(23)
Type: List Equation Expression Integer

axiom
L := [ A = 2*P1+P2, B = 2*P2+P1, C = 2*Q1+Q2, D = 2*Q2+Q1]
There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named equation with argument type(s) Equation Fraction Polynomial Integer Polynomial Integer
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. solve(L, [P1,P2])
LatexWiki Image(24)
Type: List List Equation Fraction Polynomial Integer

axiom
solve(14=x*1.1^x,x)
There are 18 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named solve with argument type(s) Equation Expression Float Variable x
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

--I don't know --tempo, Thu, 15 Mar 2007 14:15:26 -0600 reply
axiom
)set output algebra on
axiom
)set output tex off
zerosOf((1-a)*x^4+x^3+x^2+x+1,x)
(20) [%x10, %x11,
- ROOT 2 2 2 (- 3a + 6a - 3)%x11 + ((- 2a + 4a - 2)%x10 + 2a - 2)%x11 + 2 2 (- 3a + 6a - 3)%x10 + (2a - 2)%x10 + 4a - 3 + (- a + 1)%x11 + (- a + 1)%x10 + 1 / 2a - 2 ,
ROOT 2 2 2 (- 3a + 6a - 3)%x11 + ((- 2a + 4a - 2)%x10 + 2a - 2)%x11 + 2 2 (- 3a + 6a - 3)%x10 + (2a - 2)%x10 + 4a - 3 + (- a + 1)%x11 + (- a + 1)%x10 + 1 / 2a - 2 ]
Type: List Expression Integer
axiom
)set output algebra off
axiom
)set output tex on

test --faceinjarbydoor, Tue, 22 May 2007 13:53:38 -0500 reply
axiom
solve( dx_p = ( m / b ) * ( c0 - b * dv_p + c0 * log(c0) -     _
              c0 * log( c0 - b * dv_p ) + v0 * log(c0) -       _
              v0 * log( c0 - b * dv_p ) - ( c0 / b ) ), dv_p )
LatexWiki Image(25)
Type: List Equation Expression Integer

axiom
solve(((1+sqrt(5))^n-(1-sqrt(5))^n)/(sqrt(5)*2^n)=10^1001, n)
LatexWiki Image(26)
Type: List Equation Expression Integer

hw problem! --hintzy64, Sun, 14 Oct 2007 21:47:27 -0500 reply
axiom
)set output tex off
axiom
)set output algebra on

axiom
solve([nnH+2*niH+nnCs+2*niCs = n, (niH+niCs)*niH/nnH = SH, (niH+niCs)*niCs/nnCs
= SCs, (niH+nnH)/(niCs+nnCs) = alpha],[nnH, niH, nnCs, niCs])
(23) [ [ nnH = 2 2 ((- 2SH + 2SCs)alpha + (- 3SH + 3SCs)alpha - SH + SCs)niCs + 2 2 2 (- 2SH alpha + (- SH - SCs)alpha)n + (- 4SCs SH + 2SCs )alpha + 2 2 (- 6SCs SH + 4SCs )alpha - 2SCs SH + 2SCs * niCs + 2 2 2 SCs alpha n + ((2SCs SH - SCs )alpha + SCs SH - SCs )n / 2 2 (SCs alpha + SCs)n + SCs alpha + SCs ,
niH = 2 ((SH - SCs)alpha + SH - SCs)niCs + 2 2 (SH alpha n + (2SCs SH - SCs )alpha + 2SCs SH - 2SCs )niCs + 2 (- SCs SH + SCs )n / 2 SCs n + SCs ,
nnCs = 2 ((- SH + SCs)alpha - SH + SCs)niCs + (((- SH - SCs)alpha - 2SCs)n - 2SCs SH alpha - 2SCs SH)niCs + 2 SCs n + SCs SH n / 2 2 (SCs alpha + SCs)n + SCs alpha + SCs ,
2 3 ((SH - SCs)alpha + (2SH - 2SCs)alpha + SH - SCs)niCs + 2 2 2 (SH alpha + (SH + SCs)alpha + SCs)n + (2SCs SH - SCs )alpha + 2 2 (5SCs SH - 3SCs )alpha + 3SCs SH - 2SCs * 2 niCs + 2 2 2 2 2 2 ((2SCs alpha - SCs SH + 3SCs )n + 2SCs SH alpha + 2SCs SH)niCs - SCs n + 2 - SCs SH n = 0 ] ]
Type: List List Equation Fraction Polynomial Integer