changed:
-4-dimensional vector space representing Quaternion algebra
-
Quaternion Algebra Is Frobenius In Many Ways
Linear operators over a 4-dimensional vector space representing quaternion algebra
Ref:
- http://arxiv.org/abs/1103.5113
$S_3$-permuted Frobenius Algebras
*Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)*
- http://mat.uab.es/~kock/TQFT.html
Frobenius algebras and 2D topological quantum field theories
*Joachim Kock*
- http://en.wikipedia.org/wiki/Frobenius_algebra
We need the Axiom LinearOperator library.
\begin{axiom}
)library MONAL PROP LIN CALEY
\end{axiom}
Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x)==reduce(+,x)
macro ΣΞ(x,i)==reduce(+,[x for i in 1..dim])
-- list
macro Ξ(f,i)==[f for i in 1..dim]
\end{axiom}
𝐋 is the domain of 4-dimensional linear operators over the domain of rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
changed:
-T := CartesianTensor(1,dim,EXPR INT)
-X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
-X(1),X(2)
-\end{axiom}
-
-Generate structure constants for Quaternion Algebra
-\begin{axiom}
-B:=map(x+->quatern(x.1,x.2,x.3,x.4),1$SQMATRIX(4,FRAC INT)::List List FRAC INT)
-M:=matrix [[B.i*B.j for j in 1..4] for i in 1..4]
-S(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M)
-Yg:T:=unravel concat concat(map(S,B)::List List List FRAC POLY INT)
-\end{axiom}
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := LinearOperator(dim, OVAR [], ℚ)
𝐞:ℒ 𝐋 := basisVectors()
𝐝:ℒ 𝐋 := basisForms()
o:𝐋:=1 -- identity for product
I:𝐋:=[1] -- identity for composition
X:𝐋:=[2,1] -- twist
\end{axiom}
Now generate structure constants for Quaternion Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
\begin{axiom}
-- Also split-complex via Caley-Dickson parameter (p0 = -1)
q0:=subscript('q,[0])
q1:=subscript('q,[1])
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1)
-- Basis: Each B.i is a quaternion number
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j,i),j)
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
-- structure constants form a tensor operator
Y := ΣΞ(ΣΞ(ΣΞ(ѕ(i)(j)(k)*𝐞.i*𝐝.j*𝐝.k,i),j),k)
arity Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y,i),j)
\end{axiom}
changed:
-U:T := unravel(concat
- [[script(u,[[],[j,i]])
- for i in 1..dim]
- for j in 1..dim]
- )
-\end{axiom}
U:=inp([inp([script(u,[[j,i],[]]) for i in 1..dim])$𝐋 for j in 1..dim])$𝐋
\end{axiom}
changed:
- In other words, if the (3,0)-tensor::
-
- i j k i j k i j k
- \ | / \/ / \ \/
- \|/ = \ / - \ /
- 0 0 0
In other words, if the (3,0)-tensor:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture}
}
$$
changed:
-\begin{axiom}
-ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg
-\end{axiom}
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
\begin{axiom}
ω:𝐋 :=
o Y I /
o U -
o I Y /
o U o
\end{axiom}
Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.
changed:
- is called *pre-Frobenius*.
is called a [Frobenius Algebra].
added:
changed:
-J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
-uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
-J::OutputForm * uu::OutputForm = 0
-nrows(J)
-ncols(J)
-\end{axiom}
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)
\end{axiom}
changed:
-\begin{axiom}
-NJ:=nullSpace(J)
-SS:=map((x,y)+->x=y,concat map(variables,ravel U),
- entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
-Ug:T := unravel(map(x+->subst(x,SS),ravel U))
-\end{axiom}
\begin{axiom}
Ñ:=nullSpace(J)
ℰ:=map((x,y)+->x=y,concat map(variables,ravel U),
entries Σ[p[i]*Ñ.i for i in 1..#Ñ])
Ų := map(x+->subst(x,ℰ),U)$𝐋
\end{axiom}
changed:
-test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
-\end{axiom}
test(map(x+->subst(x,ℰ),ω)$𝐋=0*ω)
\end{axiom}
changed:
-Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
-factor Ud
-\end{axiom}
Ů:=determinant [[retract((𝐞.i * 𝐞.j)/Ų) for j in 1..dim] for i in 1..dim]
factor Ů
\end{axiom}
changed:
-\begin{axiom}
-Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
-\end{axiom}
-<center><pre>
-dimension
-Ω
-U
-</pre></center>
-\begin{axiom}
-contract(contract(Ωg,1,Ug,1),1,2)
-\end{axiom}
\begin{axiom}
Ω:𝐋:=unravel((0/2)$Prop,concat(transpose(1/Ů*adjoint([[retract((𝐞.i * 𝐞.j)/Ų)
for j in 1..dim] for i in 1..dim]).adjMat)::ℒ ℒ ℚ))
\end{axiom}
Check dimension
\begin{axiom}
d:𝐋:=
o Ω /
o Ų o
\end{axiom}
changed:
- Co-multiplication
-\begin{axiom}
-λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
--- just for display
-reindex(λg,[3,1,2])
-\end{axiom}
-<center><pre>
-i
-λ=Ω
-</pre></center>
-\begin{axiom}
-test(λg*X(1)=Ωg)
-\end{axiom}
Co-algebra::
λ:𝐋 :=
o Ω Ω I /
o I Y I I /
o I X I /
o I I Ų o
--test
Why aren't these the same??
\begin{axiom}
λ:𝐋 :=
o I Ω /
o Y I o
λ2:𝐋 :=
o Ω I /
o I Y o
λ - λ2
\end{axiom}
i = Unit of the algebra
\begin{axiom}
i:=𝐞.1
test
o i /
o λ = Ω
\end{axiom}
changed:
-ιg:=X(1)*Ug
ι:𝐋:=
o i I /
o Ų o
changed:
-test(ιg * Yg = Ug)
-\end{axiom}
test
o Y /
o ι o = Ų
\end{axiom}
changed:
-Ug0:T:=unravel eval(ravel Ug,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-λg0:T:=unravel eval(ravel λg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1]);
-reindex(λg0,[3,1,2])
-\end{axiom}
-
-$S_3$-permuted Frobenius Algebras
-
- Zbigniew Oziewicz, Gregory Peter Wene
- (26 Mar 2011)
- http://arxiv.org/abs/1103.5113
-
-\begin{axiom}
-test( Yg = reindex(reindex( reindex(Ug*Yg,[1,2,3]), [2,3,1])*Ωg,[3,1,2]) )
-
-Yg213 := reindex(reindex( reindex(Ug*Yg,[2,1,3]), [2,3,1])*Ωg,[3,1,2]);
-ω213 := reindex(reindex(U,[2,1])*reindex(Yg213,[1,3,2]),[3,2,1])-U*Yg213;
-J213 := jacobian(ravel ω213,concat(map(variables,ravel U))::List Symbol);
-NJ213 := nullSpace(J213)
-
--- opposite algebra
-Yg132 := reindex(reindex( reindex(Ug*Yg,[1,3,2]), [2,3,1])*Ωg,[3,1,2]);
-ω132 := reindex(reindex(U,[2,1])*reindex(Yg132,[1,3,2]),[3,2,1])-U*Yg132;
-J132 := jacobian(ravel ω132,concat(map(variables,ravel U))::List Symbol);
-NJ132 := nullSpace(J132)
-
-Yg321 := reindex(reindex( reindex(Ug*Yg,[3,2,1]), [2,3,1])*Ωg,[3,1,2]);
-ω321 := reindex(reindex(U,[2,1])*reindex(Yg321,[1,3,2]),[3,2,1])-U*Yg321;
-J321 := jacobian(ravel ω321,concat(map(variables,ravel U))::List Symbol);
-NJ321 := nullSpace(J321)
-
-Yg312 := reindex(reindex( reindex(Ug*Yg,[3,1,2]), [2,3,1])*Ωg,[3,1,2]);
-ω312 := reindex(reindex(U,[2,1])*reindex(Yg312,[1,3,2]),[3,2,1])-U*Yg312;
-J312 := jacobian(ravel ω312,concat(map(variables,ravel U))::List Symbol);
-NJ312 := nullSpace(J312)
-
-Yg231 := reindex(reindex( reindex(Ug*Yg,[2,3,1]), [2,3,1])*Ωg,[3,1,2]);
-ω231 := reindex(reindex(U,[2,1])*reindex(Yg231,[1,3,2]),[3,2,1])-U*Yg231;
-J231 := jacobian(ravel ω231,concat(map(variables,ravel U))::List Symbol);
-NJ231 := nullSpace(J231)
-\end{axiom}
Ų0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ų)$𝐋
Ω0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ω)$𝐋
λ0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),λ)$𝐋
\end{axiom}
Quaternion Algebra Is Frobenius In Many Ways
Linear operators over a 4-dimensional vector space representing quaternion algebra
Ref:
We need the Axiom LinearOperator? library.
axiom
)library MONAL PROP LIN CALEY
Monoidal is now explicitly exposed in frame initial
Monoidal will be automatically loaded when needed from
/var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL
Prop is now explicitly exposed in frame initial
Prop will be automatically loaded when needed from
/var/zope2/var/LatexWiki/PROP.NRLIB/PROP
LinearOperator is now explicitly exposed in frame initial
LinearOperator will be automatically loaded when needed from
/var/zope2/var/LatexWiki/LIN.NRLIB/LIN
CaleyDickson is now explicitly exposed in frame initial
CaleyDickson will be automatically loaded when needed from
/var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY
Use the following macros for convenient notation
axiom
-- summation
macro Σ(x)==reduce(+,x)
Type: Void
axiom
macro ΣΞ(x,i)==reduce(+,[x for i in 1..dim])
Type: Void
axiom
-- list
macro Ξ(f,i)==[f for i in 1..dim]
Type: Void
𝐋 is the domain of 4-dimensional linear operators over the domain of rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.
axiom
dim:=4
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)
Type: Type
axiom
𝐞:ℒ 𝐋 := basisVectors()
Type: List(LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer)))
axiom
𝐝:ℒ 𝐋 := basisForms()
Type: List(LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer)))
axiom
o:𝐋:=1 -- identity for product
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
I:𝐋:=[1] -- identity for composition
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Now generate structure constants for Quaternion Algebra
The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
axiom
-- Also split-complex via Caley-Dickson parameter (p0 = -1)
q0:=subscript('q,[0])
Type: Symbol
axiom
q1:=subscript('q,[1])
Type: Symbol
axiom
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1)
?}\ } (\hbox{\axiomType{CaleyDickson?}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 01 q (0)) , j , 01 q (1))" class="equation" src="images/8228930438219976963-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="551" height="18"/> | (10) |
Type: Type
axiom
-- Basis: Each B.i is a quaternion number
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
Type: List(CaleyDickson
?(CaleyDickson
?(Expression(Integer),
i,
*01q(0)),
j,
*01q(1)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j,i),j)
Type: Matrix(CaleyDickson
?(CaleyDickson
?(Expression(Integer),
i,
*01q(0)),
j,
*01q(1)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(CaleyDickson(Expression(
Integer),i,*01q(0)),j,*01q(1)) -> Matrix(Expression(Integer))
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := ΣΞ(ΣΞ(ΣΞ(ѕ(i)(j)(k)*𝐞.i*𝐝.j*𝐝.k,i),j),k)
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
arity Y
Type: Prop
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y,i),j)
Type: Matrix(LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer)))
A scalar product is denoted by the (2,0)-tensor
axiom
U:=inp([inp([script(u,[[j,i],[]]) for i in 1..dim])$𝐋 for j in 1..dim])$𝐋
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Definition 1
We say that the scalar product is associative if the tensor
equation holds:
Y = Y
U U
In other words, if the (3,0)-tensor:
(three-point function) is zero.
Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.
axiom
ω:𝐋 :=
o Y I /
o U -
o I Y /
o U o
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.
Definition 2
An algebra with a non-degenerate associative scalar product
is called a [Frobenius Algebra]?.
We may consider the problem where multiplication Y is given,
and look for all associative scalar products
This problem can be solved using linear algebra.
axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame
initial
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0
Type: Equation(OutputForm
?)
axiom
nrows(J),ncols(J)
Type: Tuple(PositiveInteger
?)
The matrix J
transforms the coefficients of the tensor
into coefficients of the tensor . We are looking for
the general linear family of tensors such that
J
transforms into for any such .
If the null space of the J
matrix is not empty we can use
the basis to find all non-trivial solutions for U:
axiom
Ñ:=nullSpace(J)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y,concat map(variables,ravel U),
entries Σ[p[i]*Ñ.i for i in 1..#Ñ])
Type: List(Equation(Expression(Integer)))
axiom
Ų := map(x+->subst(x,ℰ),U)$𝐋
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
This defines a family of pre-Frobenius algebras:
axiom
test(map(x+->subst(x,ℰ),ω)$𝐋=0*ω)
Type: Boolean
The scalar product must be non-degenerate:
axiom
Ů:=determinant [[retract((𝐞.i * 𝐞.j)/Ų) for j in 1..dim] for i in 1..dim]
Type: Expression(Integer)
axiom
factor Ů
Type: Factored(Expression(Integer))
Definition 3
Co-pairing
axiom
Ω:𝐋:=unravel((0/2)$Prop,concat(transpose(1/Ů*adjoint([[retract((𝐞.i * 𝐞.j)/Ų)
for j in 1..dim] for i in 1..dim]).adjMat)::ℒ ℒ ℚ))
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Check dimension
axiom
d:𝐋:=
o Ω /
o Ų o
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Definition 4
Co-algebra:
λ:𝐋 :=
o Ω Ω I /
o I Y I I /
o I X I /
o I I Ų o
--test
Why aren't these the same??
axiom
λ:𝐋 :=
o I Ω /
o Y I o
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
λ2:𝐋 :=
o Ω I /
o I Y o
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
λ - λ2
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
i = Unit of the algebra
axiom
i:=𝐞.1
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
test
o i /
o λ = Ω
Type: Boolean
Definition 5
Co-unit
i
U
axiom
ι:𝐋:=
o i I /
o Ų o
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
Y=U
ι
axiom
test
o Y /
o ι o = Ų
Type: Boolean
For example:
axiom
Ų0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ų)$𝐋
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
Ω0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ω)$𝐋
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))
axiom
λ0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),λ)$𝐋
Type: LinearOperator
?(4,
OrderedVariableList
?([]),
Expression(Integer))