login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Quaternion Algebra is Frobenius in Many Ways revision 4 of 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Editor: Bill Page
Time: 2011/04/19 11:49:27 GMT-7
Note: Caley-Dickson split-quaternion

changed:
-4-dimensional vector space representing Quaternion algebra
-
Quaternion Algebra Is Frobenius In Many Ways

Linear operators over a 4-dimensional vector space representing quaternion algebra

Ref:

- http://arxiv.org/abs/1103.5113

  $S_3$-permuted Frobenius Algebras

  *Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)*

- http://mat.uab.es/~kock/TQFT.html

  Frobenius algebras and 2D topological quantum field theories

  *Joachim Kock*

- http://en.wikipedia.org/wiki/Frobenius_algebra

We need the Axiom LinearOperator library.
\begin{axiom}
)library MONAL PROP LIN CALEY
\end{axiom}

Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x)==reduce(+,x)
macro ΣΞ(x,i)==reduce(+,[x for i in 1..dim])
-- list
macro Ξ(f,i)==[f for i in 1..dim]
\end{axiom}

𝐋 is the domain of 4-dimensional linear operators over the domain of rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

changed:
-T := CartesianTensor(1,dim,EXPR INT)
-X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
-X(1),X(2)
-\end{axiom}
-
-Generate structure constants for Quaternion Algebra
-\begin{axiom}
-B:=map(x+->quatern(x.1,x.2,x.3,x.4),1$SQMATRIX(4,FRAC INT)::List List FRAC INT)
-M:=matrix [[B.i*B.j for j in 1..4] for i in 1..4]                              
-S(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M)                     
-Yg:T:=unravel concat concat(map(S,B)::List List List FRAC POLY INT)
-\end{axiom}
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := LinearOperator(dim, OVAR [], ℚ)
𝐞:ℒ 𝐋      := basisVectors()
𝐝:ℒ 𝐋      := basisForms()
o:𝐋:=1     -- identity for product
I:𝐋:=[1]   -- identity for composition
X:𝐋:=[2,1] -- twist
\end{axiom}

Now generate structure constants for Quaternion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.
\begin{axiom}
-- Also split-complex via Caley-Dickson parameter (p0 = -1)
q0:=subscript('q,[0])
q1:=subscript('q,[1])
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1)
-- Basis: Each B.i is a quaternion number
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j,i),j)
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
-- structure constants form a tensor operator
Y := ΣΞ(ΣΞ(ΣΞ(ѕ(i)(j)(k)*𝐞.i*𝐝.j*𝐝.k,i),j),k)
arity Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y,i),j)
\end{axiom}

changed:
-U:T := unravel(concat
-  [[script(u,[[],[j,i]])
-    for i in 1..dim]
-      for j in 1..dim]
-        )
-\end{axiom}
U:=inp([inp([script(u,[[j,i],[]]) for i in 1..dim])$𝐋 for j in 1..dim])$𝐋
\end{axiom}


changed:
-  In other words, if the (3,0)-tensor::
-
-    i  j  k   i  j  k   i  j  k
-     \ | /     \/  /     \  \/
-      \|/   =   \ /   -   \ /
-       0         0         0
  In other words, if the (3,0)-tensor:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
$$

changed:
-\begin{axiom}
-ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg
-\end{axiom}
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

\begin{axiom}

ω:𝐋 :=
     o    Y I      /
     o     U       -
     o    I Y      /
     o     U       o

\end{axiom}

Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.


changed:
-  is called *pre-Frobenius*.
  is called a [Frobenius Algebra].

added:


changed:
-J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
-uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
-J::OutputForm * uu::OutputForm = 0
-nrows(J)
-ncols(J)
-\end{axiom}
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)
\end{axiom}


changed:
-\begin{axiom}
-NJ:=nullSpace(J)
-SS:=map((x,y)+->x=y,concat map(variables,ravel U),
-  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
-Ug:T := unravel(map(x+->subst(x,SS),ravel U))
-\end{axiom}

\begin{axiom}
Ñ:=nullSpace(J)
ℰ:=map((x,y)+->x=y,concat map(variables,ravel U),
  entries Σ[p[i]*Ñ.i for i in 1..#Ñ])
Ų := map(x+->subst(x,ℰ),U)$𝐋
\end{axiom}

changed:
-test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
-\end{axiom}
test(map(x+->subst(x,ℰ),ω)$𝐋=0*ω)
\end{axiom}

changed:
-Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
-factor Ud
-\end{axiom}
Ů:=determinant [[retract((𝐞.i * 𝐞.j)/Ų) for j in 1..dim] for i in 1..dim]
factor Ů
\end{axiom}

changed:
-\begin{axiom}
-Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
-\end{axiom}
-<center><pre>
-dimension
-Ω
-U
-</pre></center>
-\begin{axiom}
-contract(contract(Ωg,1,Ug,1),1,2)
-\end{axiom}

\begin{axiom}
Ω:𝐋:=unravel((0/2)$Prop,concat(transpose(1/Ů*adjoint([[retract((𝐞.i * 𝐞.j)/Ų)
  for j in 1..dim] for i in 1..dim]).adjMat)::ℒ ℒ ℚ))
\end{axiom}

Check dimension
\begin{axiom}

d:𝐋:=
    o   Ω    /
    o   Ų    o

\end{axiom}

changed:
-  Co-multiplication
-\begin{axiom}
-λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
--- just for display
-reindex(λg,[3,1,2])
-\end{axiom}
-<center><pre>
-i  
-λ=Ω
-</pre></center>
-\begin{axiom}
-test(λg*X(1)=Ωg)
-\end{axiom}
  Co-algebra::

    λ:𝐋 :=
         o    Ω Ω  I    /
         o   I Y I I    /
         o   I  X  I    /
         o   I I  Ų     o
    --test

Why aren't these the same??

\begin{axiom}

λ:𝐋 :=
     o    I Ω     /
     o     Y I    o

λ2:𝐋 :=
     o     Ω I    /
     o    I Y     o

λ - λ2

\end{axiom}

i = Unit of the algebra
\begin{axiom}
i:=𝐞.1
test
     o    i     /
     o    λ     =    Ω

\end{axiom}

changed:
-ιg:=X(1)*Ug

ι:𝐋:=
    o    i I    /
    o     Ų    o


changed:
-test(ιg * Yg = Ug)
-\end{axiom}
test
   o     Y     /
   o     ι     o  = Ų

\end{axiom}

changed:
-Ug0:T:=unravel eval(ravel Ug,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1])
-λg0:T:=unravel eval(ravel λg,[p[1]=1,p[2]=0,p[3]=0,p[4]=1]);
-reindex(λg0,[3,1,2])
-\end{axiom}
-
-$S_3$-permuted Frobenius Algebras
-
-    Zbigniew Oziewicz, Gregory Peter Wene
-    (26 Mar 2011)
-    http://arxiv.org/abs/1103.5113
-
-\begin{axiom}
-test( Yg = reindex(reindex(  reindex(Ug*Yg,[1,2,3]),  [2,3,1])*Ωg,[3,1,2]) )
-
-Yg213 := reindex(reindex(  reindex(Ug*Yg,[2,1,3]),  [2,3,1])*Ωg,[3,1,2]);
-ω213  := reindex(reindex(U,[2,1])*reindex(Yg213,[1,3,2]),[3,2,1])-U*Yg213;
-J213  := jacobian(ravel ω213,concat(map(variables,ravel U))::List Symbol);
-NJ213 := nullSpace(J213)
-
--- opposite algebra
-Yg132 := reindex(reindex(  reindex(Ug*Yg,[1,3,2]),  [2,3,1])*Ωg,[3,1,2]);
-ω132  := reindex(reindex(U,[2,1])*reindex(Yg132,[1,3,2]),[3,2,1])-U*Yg132;
-J132  := jacobian(ravel ω132,concat(map(variables,ravel U))::List Symbol);
-NJ132 := nullSpace(J132)
-
-Yg321 := reindex(reindex(  reindex(Ug*Yg,[3,2,1]),  [2,3,1])*Ωg,[3,1,2]);
-ω321  := reindex(reindex(U,[2,1])*reindex(Yg321,[1,3,2]),[3,2,1])-U*Yg321;
-J321  := jacobian(ravel ω321,concat(map(variables,ravel U))::List Symbol);
-NJ321 := nullSpace(J321)
-
-Yg312 := reindex(reindex(  reindex(Ug*Yg,[3,1,2]),  [2,3,1])*Ωg,[3,1,2]);
-ω312  := reindex(reindex(U,[2,1])*reindex(Yg312,[1,3,2]),[3,2,1])-U*Yg312;
-J312  := jacobian(ravel ω312,concat(map(variables,ravel U))::List Symbol);
-NJ312 := nullSpace(J312)
-
-Yg231 := reindex(reindex(  reindex(Ug*Yg,[2,3,1]),  [2,3,1])*Ωg,[3,1,2]);
-ω231  := reindex(reindex(U,[2,1])*reindex(Yg231,[1,3,2]),[3,2,1])-U*Yg231;
-J231  := jacobian(ravel ω231,concat(map(variables,ravel U))::List Symbol);
-NJ231 := nullSpace(J231)
-\end{axiom}
Ų0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ų)$𝐋
Ω0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ω)$𝐋
λ0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),λ)$𝐋
\end{axiom}

Quaternion Algebra Is Frobenius In Many Ways

Linear operators over a 4-dimensional vector space representing quaternion algebra

Ref:

We need the Axiom LinearOperator? library.

axiom
)library MONAL PROP LIN CALEY
Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x)==reduce(+,x)
Type: Void
axiom
macro ΣΞ(x,i)==reduce(+,[x for i in 1..dim])
Type: Void
axiom
-- list
macro Ξ(f,i)==[f for i in 1..dim]
Type: Void

𝐋 is the domain of 4-dimensional linear operators over the domain of rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=4

\label{eq1}4(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (4, \hbox{\axiomType{OrderedVariableList}\ } ([ ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisVectors()

\label{eq3}\left[{|_{1}}, \:{|_{2}}, \:{|_{3}}, \:{|_{4}}\right](3)
Type: List(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisForms()

\label{eq4}\left[{|_{\ }^{1}}, \:{|_{\ }^{2}}, \:{|_{\ }^{3}}, \:{|_{\ }^{4}}\right](4)
Type: List(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))
axiom
o:𝐋:=1     -- identity for product

\label{eq5}1(5)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
I:𝐋:=[1]   -- identity for composition

\label{eq6}{|_{1}^{1}}+{|_{2}^{2}}+{|_{3}^{3}}+{|_{4}^{4}}(6)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
X:𝐋:=[2,1] -- twist

\label{eq7}\begin{array}{@{}l}
\displaystyle
{|_{1 \  1}^{1 \  1}}+{|_{2 \  1}^{1 \  2}}+{|_{3 \  1}^{1 \  3}}+{|_{4 \  1}^{1 \  4}}+{|_{1 \  2}^{2 \  1}}+{|_{2 \  2}^{2 \  2}}+ 
\
\
\displaystyle
{|_{3 \  2}^{2 \  3}}+{|_{4 \  2}^{2 \  4}}+{|_{1 \  3}^{3 \  1}}+{|_{2 \  3}^{3 \  2}}+{|_{3 \  3}^{3 \  3}}+{|_{4 \  3}^{3 \  4}}+ 
\
\
\displaystyle
{|_{1 \  4}^{4 \  1}}+{|_{2 \  4}^{4 \  2}}+{|_{3 \  4}^{4 \  3}}+{|_{4 \  4}^{4 \  4}}
(7)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Now generate structure constants for Quaternion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

axiom
-- Also split-complex via Caley-Dickson parameter (p0 = -1)
q0:=subscript('q,[0])

\label{eq8}q_{0}(8)
Type: Symbol
axiom
q1:=subscript('q,[1])

\label{eq9}q_{1}(9)
Type: Symbol
axiom
QQ := ℂ(ℂ(ℚ,'i,q0),'j,q1)

\label{eq10}\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{CaleyDickson}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , <em> 01 q (0)) , j , </em> 01 q (1))?}\ } (\hbox{\axiomType{CaleyDickson?}\ } (\hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }) , i , 01 q (0)) , j , 01 q (1))" class="equation" src="images/8228930438219976963-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="551" height="18"/>(10)
Type: Type
axiom
-- Basis: Each B.i is a quaternion number
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq11}\left[ 1, \: i , \: j , \:{ij}\right](11)
Type: List(CaleyDickson?(CaleyDickson?(Expression(Integer),i,*01q(0)),j,*01q(1)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j,i),j)

\label{eq12}\left[ 
\begin{array}{cccc}
1 & i & j &{ij}
\
i & -{q_{0}}& -{ij}&{{q_{0}}j}
\
j &{ij}& -{q_{1}}&{-{q_{1}}i}
\
{ij}&{-{q_{0}}j}&{{q_{1}}i}& -{{q_{0}}\ {q_{1}}}
(12)
Type: Matrix(CaleyDickson?(CaleyDickson?(Expression(Integer),i,*01q(0)),j,*01q(1)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ
axiom
Compiling function S with type CaleyDickson(CaleyDickson(Expression(
      Integer),i,*01q(0)),j,*01q(1)) -> Matrix(Expression(Integer))

\label{eq13}\begin{array}{@{}l}
\displaystyle
\left[{\left[{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: -{q_{0}}, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: -{q_{1}}, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{{q_{0}}\ {q_{1}}}\right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: -{q_{1}}\right]}, \:{\left[ 0, \: 0, \:{q_{1}}, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 1, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \:{q_{0}}\right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: -{q_{0}}, \: 0, \: 0 \right]}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[{\left[ 0, \: 0, \: 0, \: 1 \right]}, \:{\left[ 0, \: 0, \: - 1, \: 0 \right]}, \:{\left[ 0, \: 1, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right]}\right] (13)
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := ΣΞ(ΣΞ(ΣΞ(ѕ(i)(j)(k)*𝐞.i*𝐝.j*𝐝.k,i),j),k)

\label{eq14}\begin{array}{@{}l}
\displaystyle
{|_{1}^{1 \  1}}+{|_{2}^{1 \  2}}+{|_{3}^{1 \  3}}+{|_{4}^{1 \  4}}+{|_{2}^{2 \  1}}-{{q_{0}}\ {|_{1}^{2 \  2}}}-{|_{4}^{2 \  3}}+ 
\
\
\displaystyle
{{q_{0}}\ {|_{3}^{2 \  4}}}+{|_{3}^{3 \  1}}+{|_{4}^{3 \  2}}-{{q_{1}}\ {|_{1}^{3 \  3}}}-{{q_{1}}\ {|_{2}^{3 \  4}}}+{|_{4}^{4 \  1}}- 
\
\
\displaystyle
{{q_{0}}\ {|_{3}^{4 \  2}}}+{{q_{1}}\ {|_{2}^{4 \  3}}}-{{q_{0}}\ {q_{1}}\ {|_{1}^{4 \  4}}}
(14)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
arity Y

\label{eq15}2 \over 1(15)
Type: Prop
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y,i),j)

\label{eq16}\left[ 
\begin{array}{cccc}
{|_{1}}&{|_{2}}&{|_{3}}&{|_{4}}
\
{|_{2}}& -{{q_{0}}\ {|_{1}}}&{|_{4}}& -{{q_{0}}\ {|_{3}}}
\
{|_{3}}& -{|_{4}}& -{{q_{1}}\ {|_{1}}}&{{q_{1}}\ {|_{2}}}
\
{|_{4}}&{{q_{0}}\ {|_{3}}}& -{{q_{1}}\ {|_{2}}}& -{{q_{0}}\ {q_{1}}\ {|_{1}}}
(16)
Type: Matrix(LinearOperator?(4,OrderedVariableList?([]),Expression(Integer)))

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=inp([inp([script(u,[[j,i],[]]) for i in 1..dim])$𝐋 for j in 1..dim])$𝐋

\label{eq17}\begin{array}{@{}l}
\displaystyle
{{u_{1, \: 1}}\ {|_{\ }^{1 \  1}}}+{{u_{1, \: 2}}\ {|_{\ }^{1 \  2}}}+{{u_{1, \: 3}}\ {|_{\ }^{1 \  3}}}+{{u_{1, \: 4}}\ {|_{\ }^{1 \  4}}}+ 
\
\
\displaystyle
{{u_{2, \: 1}}\ {|_{\ }^{2 \  1}}}+{{u_{2, \: 2}}\ {|_{\ }^{2 \  2}}}+{{u_{2, \: 3}}\ {|_{\ }^{2 \  3}}}+{{u_{2, \: 4}}\ {|_{\ }^{2 \  4}}}+ 
\
\
\displaystyle
{{u_{3, \: 1}}\ {|_{\ }^{3 \  1}}}+{{u_{3, \: 2}}\ {|_{\ }^{3 \  2}}}+{{u_{3, \: 3}}\ {|_{\ }^{3 \  3}}}+{{u_{3, \: 4}}\ {|_{\ }^{3 \  4}}}+ 
\
\
\displaystyle
{{u_{4, \: 1}}\ {|_{\ }^{4 \  1}}}+{{u_{4, \: 2}}\ {|_{\ }^{4 \  2}}}+{{u_{4, \: 3}}\ {|_{\ }^{4 \  3}}}+{{u_{4, \: 4}}\ {|_{\ }^{4 \  4}}}
(17)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq18}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (18)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=
     o    Y I      /
     o     U       -
     o    I Y      /
     o     U       o

\label{eq19}\begin{array}{@{}l}
\displaystyle
{{\left({u_{2, \: 1}}-{u_{1, \: 2}}\right)}\ {|_{\ }^{1 \  2 \  1}}}+{{\left({u_{2, \: 2}}+{{q_{0}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{1 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left({u_{2, \: 3}}+{u_{1, \: 4}}\right)}\ {|_{\ }^{1 \  2 \  3}}}+{{\left({u_{2, \: 4}}-{{q_{0}}\ {u_{1, \: 3}}}\right)}\ {|_{\ }^{1 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left({u_{3, \: 1}}-{u_{1, \: 3}}\right)}\ {|_{\ }^{1 \  3 \  1}}}+{{\left({u_{3, \: 2}}-{u_{1, \: 4}}\right)}\ {|_{\ }^{1 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left({u_{3, \: 3}}+{{q_{1}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{1 \  3 \  3}}}+{{\left({u_{3, \: 4}}+{{q_{1}}\ {u_{1, \: 2}}}\right)}\ {|_{\ }^{1 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left({u_{4, \: 1}}-{u_{1, \: 4}}\right)}\ {|_{\ }^{1 \  4 \  1}}}+{{\left({u_{4, \: 2}}+{{q_{0}}\ {u_{1, \: 3}}}\right)}\ {|_{\ }^{1 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({u_{4, \: 3}}-{{q_{1}}\ {u_{1, \: 2}}}\right)}\ {|_{\ }^{1 \  4 \  3}}}+{{\left({u_{4, \: 4}}+{{q_{0}}\ {q_{1}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{1 \  4 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u_{2, \: 2}}-{{q_{0}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{2 \  2 \  1}}}+{{\left({{q_{0}}\ {u_{2, \: 1}}}-{{q_{0}}\ {u_{1, \: 2}}}\right)}\ {|_{\ }^{2 \  2 \  2}}}+ 
\
\
\displaystyle
{{\left({u_{2, \: 4}}-{{q_{0}}\ {u_{1, \: 3}}}\right)}\ {|_{\ }^{2 \  2 \  3}}}+{{\left(-{{q_{0}}\ {u_{2, \: 3}}}-{{q_{0}}\ {u_{1, \: 4}}}\right)}\ {|_{\ }^{2 \  2 \  4}}}+ 
\
\
\displaystyle
{{\left(-{u_{4, \: 1}}-{u_{2, \: 3}}\right)}\ {|_{\ }^{2 \  3 \  1}}}+{{\left(-{u_{4, \: 2}}-{u_{2, \: 4}}\right)}\ {|_{\ }^{2 \  3 \  2}}}+ 
\
\
\displaystyle
{{\left(-{u_{4, \: 3}}+{{q_{1}}\ {u_{2, \: 1}}}\right)}\ {|_{\ }^{2 \  3 \  3}}}+{{\left(-{u_{4, \: 4}}+{{q_{1}}\ {u_{2, \: 2}}}\right)}\ {|_{\ }^{2 \  3 \  4}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{3, \: 1}}}-{u_{2, \: 4}}\right)}\ {|_{\ }^{2 \  4 \  1}}}+{{\left({{q_{0}}\ {u_{3, \: 2}}}+{{q_{0}}\ {u_{2, \: 3}}}\right)}\ {|_{\ }^{2 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{3, \: 3}}}-{{q_{1}}\ {u_{2, \: 2}}}\right)}\ {|_{\ }^{2 \  4 \  3}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{3, \: 4}}}+{{q_{0}}\ {q_{1}}\ {u_{2, \: 1}}}\right)}\ {|_{\ }^{2 \  4 \  4}}}+{{\left({u_{4, \: 1}}-{u_{3, \: 2}}\right)}\ {|_{\ }^{3 \  2 \  1}}}+ 
\
\
\displaystyle
{{\left({u_{4, \: 2}}+{{q_{0}}\ {u_{3, \: 1}}}\right)}\ {|_{\ }^{3 \  2 \  2}}}+{{\left({u_{4, \: 3}}+{u_{3, \: 4}}\right)}\ {|_{\ }^{3 \  2 \  3}}}+ 
\
\
\displaystyle
{{\left({u_{4, \: 4}}-{{q_{0}}\ {u_{3, \: 3}}}\right)}\ {|_{\ }^{3 \  2 \  4}}}+{{\left(-{u_{3, \: 3}}-{{q_{1}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{3 \  3 \  1}}}+ 
\
\
\displaystyle
{{\left(-{u_{3, \: 4}}-{{q_{1}}\ {u_{1, \: 2}}}\right)}\ {|_{\ }^{3 \  3 \  2}}}+{{\left({{q_{1}}\ {u_{3, \: 1}}}-{{q_{1}}\ {u_{1, \: 3}}}\right)}\ {|_{\ }^{3 \  3 \  3}}}+ 
\
\
\displaystyle
{{\left({{q_{1}}\ {u_{3, \: 2}}}-{{q_{1}}\ {u_{1, \: 4}}}\right)}\ {|_{\ }^{3 \  3 \  4}}}+{{\left(-{u_{3, \: 4}}-{{q_{1}}\ {u_{2, \: 1}}}\right)}\ {|_{\ }^{3 \  4 \  1}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{3, \: 3}}}-{{q_{1}}\ {u_{2, \: 2}}}\right)}\ {|_{\ }^{3 \  4 \  2}}}+{{\left(-{{q_{1}}\ {u_{3, \: 2}}}-{{q_{1}}\ {u_{2, \: 3}}}\right)}\ {|_{\ }^{3 \  4 \  3}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {q_{1}}\ {u_{3, \: 1}}}-{{q_{1}}\ {u_{2, \: 4}}}\right)}\ {|_{\ }^{3 \  4 \  4}}}+{{\left(-{u_{4, \: 2}}-{{q_{0}}\ {u_{3, \: 1}}}\right)}\ {|_{\ }^{4 \  2 \  1}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{4, \: 1}}}-{{q_{0}}\ {u_{3, \: 2}}}\right)}\ {|_{\ }^{4 \  2 \  2}}}+{{\left({u_{4, \: 4}}-{{q_{0}}\ {u_{3, \: 3}}}\right)}\ {|_{\ }^{4 \  2 \  3}}}+ 
\
\
\displaystyle
{{\left(-{{q_{0}}\ {u_{4, \: 3}}}-{{q_{0}}\ {u_{3, \: 4}}}\right)}\ {|_{\ }^{4 \  2 \  4}}}+{{\left(-{u_{4, \: 3}}+{{q_{1}}\ {u_{2, \: 1}}}\right)}\ {|_{\ }^{4 \  3 \  1}}}+ 
\
\
\displaystyle
{{\left(-{u_{4, \: 4}}+{{q_{1}}\ {u_{2, \: 2}}}\right)}\ {|_{\ }^{4 \  3 \  2}}}+{{\left({{q_{1}}\ {u_{4, \: 1}}}+{{q_{1}}\ {u_{2, \: 3}}}\right)}\ {|_{\ }^{4 \  3 \  3}}}+ 
\
\
\displaystyle
{{\left({{q_{1}}\ {u_{4, \: 2}}}+{{q_{1}}\ {u_{2, \: 4}}}\right)}\ {|_{\ }^{4 \  3 \  4}}}+{{\left(-{u_{4, \: 4}}-{{q_{0}}\ {q_{1}}\ {u_{1, \: 1}}}\right)}\ {|_{\ }^{4 \  4 \  1}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {u_{4, \: 3}}}-{{q_{0}}\ {q_{1}}\ {u_{1, \: 2}}}\right)}\ {|_{\ }^{4 \  4 \  2}}}+ 
\
\
\displaystyle
{{\left(-{{q_{1}}\ {u_{4, \: 2}}}-{{q_{0}}\ {q_{1}}\ {u_{1, \: 3}}}\right)}\ {|_{\ }^{4 \  4 \  3}}}+ 
\
\
\displaystyle
{{\left({{q_{0}}\ {q_{1}}\ {u_{4, \: 1}}}-{{q_{0}}\ {q_{1}}\ {u_{1, \: 4}}}\right)}\ {|_{\ }^{4 \  4 \  4}}}
(19)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0

\label{eq20}\begin{array}{@{}l}
\displaystyle
{{\left[ 
\begin{array}{cccccccccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
{q_{0}}& 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 
\
{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 
\
0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 
\
{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
-{q_{0}}& 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & -{q_{0}}& 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & -{q_{0}}& 0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 &{q_{0}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{q_{0}}& 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 1 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & 1 
\
-{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 & 0 
\
0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 &{q_{0}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 & -{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{1}}&{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & - 1 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{0}}& 0 & 0 &{q_{0}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{0}}& 0 & 0 & 0 & 0 & 1 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{0}}& 0 & 0 & -{q_{0}}& 0 
\
0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 & 0 
\
0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 & 0 & 0 & 0 &{q_{1}}& 0 & 0 
\
-{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & - 1 
\
0 & -{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{q_{0}}& 0 
\
0 & 0 & -{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -{q_{1}}& 0 & 0 
\
0 & 0 & 0 & -{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &{{q_{0}}\ {q_{1}}}& 0 & 0 & 0 
(20)
Type: Equation(OutputForm?)
axiom
nrows(J),ncols(J)

\label{eq21}\left[{64}, \:{16}\right](21)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J)

\label{eq22}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 0, \: 0, \: 0, \: 1, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 1, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: -{1 \over{q_{0}}}, \: 0, \: 0, \: 0, \: 0, \: - 1, \: -{1 \over{q_{0}}}, \: 0, \: 0, \: 0, \: 0, \: 1, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{1 \over{q_{1}}}, \: 0, \: 0, \:{1 \over{q_{1}}}, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: - 1, \: 0, \: 0, \: 1, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ -{1 \over{{q_{0}}\ {q_{1}}}}, \: 0, \: 0, \: 0, \: 0, \:{1 \over{q_{1}}}, \: 0, \: 0, \: 0, \: 0, \:{1 \over{q_{0}}}, \: 0, \: 0, \: 0, \: 0, \: 1 \right]}\right] 
(22)
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y,concat map(variables,ravel U),
  entries Σ[p[i]*Ñ.i for i in 1..#Ñ])

\label{eq23}\begin{array}{@{}l}
\displaystyle
\left[{{u_{1, \: 1}}= -{{p_{4}}\over{{q_{0}}\ {q_{1}}}}}, \:{{u_{1, \: 2}}={{p_{3}}\over{q_{1}}}}, \:{{u_{1, \: 3}}= -{{p_{2}}\over{q_{0}}}}, \:{{u_{1, \: 4}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u_{2, \: 1}}={{p_{3}}\over{q_{1}}}}, \:{{u_{2, \: 2}}={{p_{4}}\over{q_{1}}}}, \:{{u_{2, \: 3}}= -{p_{1}}}, \:{{u_{2, \: 4}}= -{p_{2}}}, \: \right.
\
\
\displaystyle
\left.{{u_{3, \: 1}}= -{{p_{2}}\over{q_{0}}}}, \:{{u_{3, \: 2}}={p_{1}}}, \:{{u_{3, \: 3}}={{p_{4}}\over{q_{0}}}}, \:{{u_{3, \: 4}}= -{p_{3}}}, \: \right.
\
\
\displaystyle
\left.{{u_{4, \: 1}}={p_{1}}}, \:{{u_{4, \: 2}}={p_{2}}}, \:{{u_{4, \: 3}}={p_{3}}}, \:{{u_{4, \: 4}}={p_{4}}}\right] 
(23)
Type: List(Equation(Expression(Integer)))
axiom
Ų := map(x+->subst(x,ℰ),U)$𝐋

\label{eq24}\begin{array}{@{}l}
\displaystyle
-{{{p_{4}}\over{{q_{0}}\ {q_{1}}}}\ {|_{\ }^{1 \  1}}}+{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{1 \  2}}}-{{{p_{2}}\over{q_{0}}}\ {|_{\ }^{1 \  3}}}+{{p_{1}}\ {|_{\ }^{1 \  4}}}+{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{2 \  1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{q_{1}}}\ {|_{\ }^{2 \  2}}}-{{p_{1}}\ {|_{\ }^{2 \  3}}}-{{p_{2}}\ {|_{\ }^{2 \  4}}}-{{{p_{2}}\over{q_{0}}}\ {|_{\ }^{3 \  1}}}+{{p_{1}}\ {|_{\ }^{3 \  2}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{q_{0}}}\ {|_{\ }^{3 \  3}}}-{{p_{3}}\ {|_{\ }^{3 \  4}}}+{{p_{1}}\ {|_{\ }^{4 \  1}}}+{{p_{2}}\ {|_{\ }^{4 \  2}}}+{{p_{3}}\ {|_{\ }^{4 \  3}}}+{{p_{4}}\ {|_{\ }^{4 \  4}}}
(24)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

This defines a family of pre-Frobenius algebras:

axiom
test(map(x+->subst(x,ℰ),ω)$𝐋=0*ω)

\label{eq25} \mbox{\rm true} (25)
Type: Boolean

The scalar product must be non-degenerate:

axiom
Ů:=determinant [[retract((𝐞.i * 𝐞.j)/Ų) for j in 1..dim] for i in 1..dim]

\label{eq26}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{{{p_{1}}^4}\ {{q_{0}}^2}}-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}\ {q_{0}}}-{{p_{2}}^4}\right)}\ {{q_{1}}^2}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{2 \ {{p_{1}}^2}\ {{p_{3}}^2}\ {{q_{0}}^2}}+ 
\
\
\displaystyle
{{\left(-{2 \ {{p_{1}}^2}\ {{p_{4}}^2}}-{2 \ {{p_{2}}^2}\ {{p_{3}}^2}}\right)}\ {q_{0}}}-{2 \ {{p_{2}}^2}\ {{p_{4}}^2}}
(26)
Type: Expression(Integer)
axiom
factor Ů

\label{eq27}{\left(
\begin{array}{@{}l}
\displaystyle
{{\left(-{{{p_{1}}^4}\ {{q_{0}}^2}}-{2 \ {{p_{1}}^2}\ {{p_{2}}^2}\ {q_{0}}}-{{p_{2}}^4}\right)}\ {{q_{1}}^2}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{2 \ {{p_{1}}^2}\ {{p_{3}}^2}\ {{q_{0}}^2}}+ 
\
\
\displaystyle
{{\left(-{2 \ {{p_{1}}^2}\ {{p_{4}}^2}}-{2 \ {{p_{2}}^2}\ {{p_{3}}^2}}\right)}\ {q_{0}}}-{2 \ {{p_{2}}^2}\ {{p_{4}}^2}}
(27)
Type: Factored(Expression(Integer))

Definition 3

Co-pairing

axiom
Ω:𝐋:=unravel((0/2)$Prop,concat(transpose(1/Ů*adjoint([[retract((𝐞.i * 𝐞.j)/Ų)
  for j in 1..dim] for i in 1..dim]).adjMat)::ℒ ℒ ℚ))

\label{eq28}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}}}
(28)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Check dimension

axiom
d:𝐋:=
    o   Ω    /
    o   Ų    o

\label{eq29}4(29)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Definition 4

Co-algebra:

    λ:𝐋 :=
         o    Ω Ω  I    /
         o   I Y I I    /
         o   I  X  I    /
         o   I I  Ų     o
    --test

Why aren't these the same??

axiom
λ:𝐋 :=
     o    I Ω     /
     o     Y I    o

\label{eq30}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{1}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{3}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{3}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{3}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{3}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{4}}}
(30)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
λ2:𝐋 :=
     o     Ω I    /
     o    I Y     o

\label{eq31}\begin{array}{@{}l}
\displaystyle
-{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{1}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{1}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{1}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{1}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{1}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{1}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{1}}}+ 
\
\
\displaystyle
{{{p_{4}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{1}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{2}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{2}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{2}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{2}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{2}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{3}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{3}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{3}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{3}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{3}}}- 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{4}}}+ 
\
\
\displaystyle
{{{{p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  3}^{4}}}- 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{4}}}- 
\
\
\displaystyle
{{{{p_{4}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{4}}}- 
\
\
\displaystyle
{{{{p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{4}}}+ 
\
\
\displaystyle
{{{{p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{4}}}+ 
\
\
\displaystyle
{{{{p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  4}^{4}}}
(31)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
λ - λ2

\label{eq32}\begin{array}{@{}l}
\displaystyle
{{{2 \ {p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{2}}}+ 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{2}}}- 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{2}}}+ 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{2}}}+ 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{2}}}+ 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{2}}}+ 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{2}}}- 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{2}}}- 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{3}}}+ 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  4}^{3}}}- 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{3}}}- 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  3}^{3}}}+ 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  2}^{3}}}+ 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{3}}}+ 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  1}^{3}}}- 
\
\
\displaystyle
{{{2 \ {p_{1}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{3}}}- 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  2}^{4}}}- 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{1 \  3}^{4}}}- 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {{q_{1}}^2}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  1}^{4}}}- 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{2 \  4}^{4}}}- 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {{q_{0}}^2}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  1}^{4}}}+ 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{3 \  4}^{4}}}+ 
\
\
\displaystyle
{{{2 \ {p_{3}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  2}^{4}}}- 
\
\
\displaystyle
{{{2 \ {p_{2}}\ {q_{0}}\ {q_{1}}}\over{{{\left({{{p_{1}}^2}\ {q_{0}}}+{{p_{2}}^2}\right)}\ {q_{1}}}+{{{p_{3}}^2}\ {q_{0}}}+{{p_{4}}^2}}}\ {|_{4 \  3}^{4}}}
(32)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq33}|_{1}(33)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
test
     o    i     /
     o    λ     =    Ω

\label{eq34} \mbox{\rm true} (34)
Type: Boolean

Definition 5

Co-unit
  i 
  U
  

axiom
ι:𝐋:=
    o    i I    /
    o     Ų    o

\label{eq35}-{{{p_{4}}\over{{q_{0}}\ {q_{1}}}}\ {|_{\ }^{1}}}+{{{p_{3}}\over{q_{1}}}\ {|_{\ }^{2}}}-{{{p_{2}}\over{q_{0}}}\ {|_{\ }^{3}}}+{{p_{1}}\ {|_{\ }^{4}}}(35)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))

Y=U
ι  
axiom
test
   o     Y     /
   o     ι     o  = Ų

\label{eq36} \mbox{\rm true} (36)
Type: Boolean

For example:

axiom
Ų0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ų)$𝐋

\label{eq37}\begin{array}{@{}l}
\displaystyle
{{\sqrt{2}}\ {|_{\ }^{1 \  1}}}-{|_{\ }^{1 \  2}}+{|_{\ }^{1 \  3}}+{|_{\ }^{1 \  4}}-{|_{\ }^{2 \  1}}+{{\sqrt{2}}\ {|_{\ }^{2 \  2}}}-{|_{\ }^{2 \  3}}- 
\
\
\displaystyle
{|_{\ }^{2 \  4}}+{|_{\ }^{3 \  1}}+{|_{\ }^{3 \  2}}+{{\sqrt{2}}\ {|_{\ }^{3 \  3}}}-{|_{\ }^{3 \  4}}+{|_{\ }^{4 \  1}}+{|_{\ }^{4 \  2}}+{|_{\ }^{4 \  3}}- 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{\ }^{4 \  4}}}
(37)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
Ω0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),Ω)$𝐋

\label{eq38}\begin{array}{@{}l}
\displaystyle
{{\sqrt{2}}\ {|_{1 \  1}}}+{|_{1 \  2}}-{|_{1 \  3}}+{|_{1 \  4}}+{|_{2 \  1}}+{{\sqrt{2}}\ {|_{2 \  2}}}-{|_{2 \  3}}+{|_{2 \  4}}- 
\
\
\displaystyle
{|_{3 \  1}}+{|_{3 \  2}}+{{\sqrt{2}}\ {|_{3 \  3}}}+{|_{3 \  4}}+{|_{4 \  1}}-{|_{4 \  2}}-{|_{4 \  3}}-{{\sqrt{2}}\ {|_{4 \  4}}}
(38)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))
axiom
λ0:=map(x+->subst(x,[q[0]=-1,q[1]=-1,p[1]=1,p[2]=1,p[3]=1,p[4]=-sqrt(2)]),λ)$𝐋

\label{eq39}\begin{array}{@{}l}
\displaystyle
{{\sqrt{2}}\ {|_{1 \  1}^{1}}}+{|_{1 \  2}^{1}}-{|_{1 \  3}^{1}}+{|_{1 \  4}^{1}}+{|_{2 \  1}^{1}}+{{\sqrt{2}}\ {|_{2 \  2}^{1}}}-{|_{2 \  3}^{1}}+ 
\
\
\displaystyle
{|_{2 \  4}^{1}}-{|_{3 \  1}^{1}}+{|_{3 \  2}^{1}}+{{\sqrt{2}}\ {|_{3 \  3}^{1}}}+{|_{3 \  4}^{1}}+{|_{4 \  1}^{1}}-{|_{4 \  2}^{1}}- 
\
\
\displaystyle
{|_{4 \  3}^{1}}-{{\sqrt{2}}\ {|_{4 \  4}^{1}}}+{|_{1 \  1}^{2}}+{{\sqrt{2}}\ {|_{1 \  2}^{2}}}-{|_{1 \  3}^{2}}+{|_{1 \  4}^{2}}+ 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{2 \  1}^{2}}}+{|_{2 \  2}^{2}}-{|_{2 \  3}^{2}}+{|_{2 \  4}^{2}}-{|_{3 \  1}^{2}}+{|_{3 \  2}^{2}}+{|_{3 \  3}^{2}}+ 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{3 \  4}^{2}}}+{|_{4 \  1}^{2}}-{|_{4 \  2}^{2}}-{{\sqrt{2}}\ {|_{4 \  3}^{2}}}-{|_{4 \  4}^{2}}-{|_{1 \  1}^{3}}+{|_{1 \  2}^{3}}+ 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{1 \  3}^{3}}}+{|_{1 \  4}^{3}}+{|_{2 \  1}^{3}}-{|_{2 \  2}^{3}}-{|_{2 \  3}^{3}}-{{\sqrt{2}}\ {|_{2 \  4}^{3}}}+ 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{3 \  1}^{3}}}+{|_{3 \  2}^{3}}-{|_{3 \  3}^{3}}+{|_{3 \  4}^{3}}+{|_{4 \  1}^{3}}+{{\sqrt{2}}\ {|_{4 \  2}^{3}}}-{|_{4 \  3}^{3}}+ 
\
\
\displaystyle
{|_{4 \  4}^{3}}-{|_{1 \  1}^{4}}+{|_{1 \  2}^{4}}+{|_{1 \  3}^{4}}+{{\sqrt{2}}\ {|_{1 \  4}^{4}}}+{|_{2 \  1}^{4}}-{|_{2 \  2}^{4}}- 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{2 \  3}^{4}}}-{|_{2 \  4}^{4}}+{|_{3 \  1}^{4}}+{{\sqrt{2}}\ {|_{3 \  2}^{4}}}-{|_{3 \  3}^{4}}+{|_{3 \  4}^{4}}+ 
\
\
\displaystyle
{{\sqrt{2}}\ {|_{4 \  1}^{4}}}+{|_{4 \  2}^{4}}-{|_{4 \  3}^{4}}+{|_{4 \  4}^{4}}
(39)
Type: LinearOperator?(4,OrderedVariableList?([]),Expression(Integer))