login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxObserverAsIdempotent revision 3 of 21

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Editor: Bill Page
Time: 2014/01/24 17:34:41 GMT+0
Note:

added:
-- idempotent
--MT := [[monomial(eval(coeff(mod(i*j)),[γ(gens(1),gens(1))=1,γ(gens(2),gens(2))=1,γ(gens(3),gens(3))=1,γ(gens(2),gens(1))=γ(gens(1),gens(2)),γ(gens(3),gens(2))=γ(gens(2),gens(3)),γ(gens(3),gens(1))=γ(gens(1),gens(3)),m(gens(1))=1,m(gens(2))=1,m(gens(3))=1]),monomial(mod(i*j)))$MK for j in basis] for i in basis]
-- nilpotent
--MT := [[monomial(eval(coeff(mod(i*j)),[γ(gens(1),gens(1))=0,γ(gens(2),gens(2))=0,γ(gens(3),gens(3))=0,m(gens(1))=1,m(gens(2))=1,m(gens(3))=1]),monomial(mod(i*j)))$MK for j in basis] for i in basis]

Obs(3) is a 9 dimensional Frobenius Algrebra

fricas
)set output abbreviate on
V := OrderedVariableList [p,q,r]

\label{eq1}\hbox{\axiomType{OVAR}\ } ([ p , q , r ])(1)
Type: TYPE
fricas
M := FreeMonoid V

\label{eq2}\hbox{\axiomType{FMONOID}\ } (\hbox{\axiomType{OVAR}\ } ([ p , q , r ]))(2)
Type: TYPE
fricas
gens:List M := enumerate()$V

\label{eq3}\left[ p , \: q , \: r \right](3)
Type: LIST(FMONOID(OVAR([p,q,r])))
fricas
divisible := Record(lm: M,rm: M)

\label{eq4}\mbox{\rm \hbox{\axiomType{Record}\ } (lm : \hbox{\axiomType{FMONOID}\ } (\hbox{\axiomType{OVAR}\ } ([ p , q , r ])) , rm : \hbox{\axiomType{FMONOID}\ } (\hbox{\axiomType{OVAR}\ } ([ p , q , r ])))}(4)
Type: TYPE
fricas
leftDiv(k:Union(divisible,"failed")):M == (k::divisible).lm
Function declaration leftDiv : Union(Record(lm: FMONOID(OVAR([p,q,r] )),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p,q,r]) ) has been added to workspace.
Type: VOID
fricas
rightDiv(k:Union(divisible,"failed")):M == (k::divisible).rm
Function declaration rightDiv : Union(Record(lm: FMONOID(OVAR([p,q,r ])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p,q,r] )) has been added to workspace.
Type: VOID
fricas
K := FRAC POLY INT

\label{eq5}\hbox{\axiomType{FRAC}\ } (\hbox{\axiomType{POLY}\ } (\hbox{\axiomType{INT}\ }))(5)
Type: TYPE
fricas
MK := FreeModule(K,M)

\label{eq6}FM (\hbox{\axiomType{FRAC}\ } (\hbox{\axiomType{POLY}\ } (\hbox{\axiomType{INT}\ })) , \hbox{\axiomType{FMONOID}\ } (\hbox{\axiomType{OVAR}\ } ([ p , q , r ])))(6)
Type: TYPE
fricas
coeff(x:MK):K == leadingCoefficient(x)
Function declaration coeff : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r] ))) -> FRAC(POLY(INT)) has been added to workspace.
Type: VOID
fricas
monomial(x:MK):M == leadingMonomial(x)
Function declaration monomial : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q ,r]))) -> FMONOID(OVAR([p,q,r])) has been added to workspace.
Type: VOID
fricas
m(x:M):K == subscript('m,[retract(x)::Symbol])
Function declaration m : FMONOID(OVAR([p,q,r])) -> FRAC(POLY(INT)) has been added to workspace.
Type: VOID
fricas
γ(x:M,y:M):K == subscript('γ,[concat(string retract x, string retract y)::Symbol])
Function declaration γ : (FMONOID(OVAR([p,q,r])),FMONOID(OVAR([p,q,r ]))) -> FRAC(POLY(INT)) has been added to workspace.
Type: VOID

Basis

fricas
basis := concat(gens,concat [[j*i for i in gens | i~=j] for j in gens])

\label{eq7}\left[ p , \: q , \: r , \:{p \  q}, \:{p \  r}, \:{q \  p}, \:{q \  r}, \:{r \  p}, \:{r \  q}\right](7)
Type: LIST(FMONOID(OVAR([p,q,r])))

Idempotent

fricas
rule1(ij:MK):MK ==
  for k in gens repeat
    kk := divide(monomial(ij),k*k)
    if kk case divisible then
      ij:=(coeff(ij) * m(k)*γ(k,k)) * (leftDiv(kk) * k * rightDiv(kk))
  return(ij)
Function declaration rule1 : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r] ))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added to workspace.
Type: VOID

Reduction

fricas
rule2(ij:MK):MK ==
  for i in gens repeat
    for j in gens | j ~= i repeat
      for k in gens | k ~= j repeat
        ijk:=divide(leadingMonomial(ij),i*j*k)
        if ijk case divisible then
          --if i=k then
          --  ij := (coeff(ij)*m(i)*m(j)*γ(i,j)*γ(j,i) ) * _
          --        (leftDiv(ijk)*i*rightDiv(ijk))
          --else
            ij := (coeff(ij)*m(j)*γ(i,j)*γ(j,k) / γ(i,k) ) * _
                  (leftDiv(ijk)*i*k*rightDiv(ijk))
  return(ij)
Function declaration rule2 : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r] ))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added to workspace.
Type: VOID

Modulo fixed point of applied rules

fricas
mod(ij:MK):MK ==
  ijFix:MK := 1
  while ijFix~=ij repeat
    ijFix := ij
    ij := rule1(ij)
    ij := rule2(ij)
  return(ij)
Function declaration mod : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])) ) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added to workspace.
Type: VOID

Matrix

Multiplication is monoidal concatenation modulo the fixed point

fricas
MT := [[mod(i*j) for j in basis] for i in basis]
fricas
Compiling function monomial with type FM(FRAC(POLY(INT)),FMONOID(
      OVAR([p,q,r]))) -> FMONOID(OVAR([p,q,r]))
fricas
Compiling function coeff with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
      p,q,r]))) -> FRAC(POLY(INT))
fricas
Compiling function m with type FMONOID(OVAR([p,q,r])) -> FRAC(POLY(
      INT))
fricas
Compiling function γ with type (FMONOID(OVAR([p,q,r])),FMONOID(OVAR(
      [p,q,r]))) -> FRAC(POLY(INT))
fricas
Compiling function leftDiv with type Union(Record(lm: FMONOID(OVAR([
      p,q,r])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p
      ,q,r]))
fricas
Compiling function rightDiv with type Union(Record(lm: FMONOID(OVAR(
      [p,q,r])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([
      p,q,r]))
fricas
Compiling function rule1 with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
      p,q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))
fricas
Compiling function rule2 with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
      p,q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))
fricas
Compiling function mod with type FM(FRAC(POLY(INT)),FMONOID(OVAR([p,
      q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))

\label{eq8}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
\left[{{m_{p}}\ {��_{pp}}\  p}, \:{p \  q}, \:{p \  r}, \:{{m_{p}}\ {��_{pp}}\  p \  q}, \:{{m_{p}}\ {��_{pp}}\  p \  r}, \:{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}\  p}, \: \right.
\
\
\displaystyle
\left.{{{{m_{q}}\ {��_{pq}}\ {��_{qr}}}\over{��_{pr}}}\  p \  r}, \:{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}\  p}, \:{{{{m_{r}}\ {��_{pr}}\ {��_{rq}}}\over{��_{pq}}}\  p \  q}\right] (8)
Type: LIST(LIST(FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))))

Structure Constants

fricas
R:=FRAC DMP(concat [[m(i) for i in gens],concat [[γ(j,i) for i in gens] for j in gens]], INT)

\label{eq9}\hbox{\axiomType{FRAC}\ } (\hbox{\axiomType{DMP}\ } ([ <em> 01 mp , </em> 01 mq , <em> 01 mr , </em> 01 �� pp , * 01 �� pq , * 01 �� pr , * 01 �� qp , * 01 �� qq , * 01 �� qr , * 01 �� rp , * 0
1 �� rq , * 01 �� rr ] , \hbox{\axiomType{INT}\ }))(9)
Type: TYPE
fricas
mat3(y:M):List List R == map(z+->map(x+->coefficient(x,y)::FRAC POLY INT,z),MT)
Function declaration mat3 : FMONOID(OVAR([p,q,r])) -> LIST(LIST(FRAC (DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr ,*01γrp,*01γrq,*01γrr],INT)))) has been added to workspace.
Type: VOID
fricas
ss:=map(mat3, basis)
fricas
Compiling function mat3 with type FMONOID(OVAR([p,q,r])) -> LIST(
      LIST(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γ
      qq,*01γqr,*01γrp,*01γrq,*01γrr],INT))))

\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
\left[{\left[{{m_{p}}\ {��_{pp}}}, \: 0, \: 0, \: 0, \: 0, \:{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \: 0, \:{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \:{\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right]}, \: \right.
\
\
\displaystyle
\left.{
\begin{array}{@{}l}
\displaystyle
\left[{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \: 0, \: 0, \: 0, \: 0, \:{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}, \: 0, \: \right.
\
\
\displaystyle
\left.{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}, \: 0 \right] 
(10)
Type: LIST(LIST(LIST(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))))

Algebra

fricas
cats(m:M):Symbol==concat(map(x+->string(x.gen::Symbol),factors m))::Symbol
Function declaration cats : FMONOID(OVAR([p,q,r])) -> SYMBOL has been added to workspace.
Type: VOID
fricas
A:=AlgebraGivenByStructuralConstants(R,#(basis)::PI,map(cats,basis),ss::Vector(Matrix R))
fricas
Compiling function cats with type FMONOID(OVAR([p,q,r])) -> SYMBOL

\label{eq11}\hbox{\axiomType{ALGSC}\ } (\hbox{\axiomType{FRAC}\ } (\hbox{\axiomType{DMP}\ } ([ <em> 01 mp , </em> 01 mq , <em> 01 mr , </em> 01 �� pp , * 01 �� pq , * 01 �� pr , * 01 �� qp , * 01 �� qq , * 01 �� qr , * 01 �� rp , * 01 �� rq , * 01 �� rr ] , \hbox{\axiomType{INT}\ })) , 9, [ p , q , r , pq , pr , qp , qr , rp , rq ] , [ \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } , \hbox{\axiomType{MATRIX}\ } ])(11)
Type: TYPE
fricas
alternative?()$A
algebra satisfies 2*associator(a,b,b) = 0 = 2*associator(a,a,b) = 0

\label{eq12} \mbox{\rm true} (12)
Type: BOOLEAN
fricas
antiAssociative?()$A
algebra is not anti-associative

\label{eq13} \mbox{\rm false} (13)
Type: BOOLEAN
fricas
antiCommutative?()$A
algebra is not anti-commutative

\label{eq14} \mbox{\rm false} (14)
Type: BOOLEAN
fricas
associative?()$A
algebra is associative

\label{eq15} \mbox{\rm true} (15)
Type: BOOLEAN
fricas
commutative?()$A
algebra is not commutative

\label{eq16} \mbox{\rm false} (16)
Type: BOOLEAN
fricas
flexible?()$A
algebra is flexible

\label{eq17} \mbox{\rm true} (17)
Type: BOOLEAN
fricas
jacobiIdentity?()$A
Jacobi identity does not hold

\label{eq18} \mbox{\rm false} (18)
Type: BOOLEAN
fricas
jordanAdmissible?()$A
algebra is not Jordan admissible

\label{eq19} \mbox{\rm false} (19)
Type: BOOLEAN
fricas
jordanAlgebra?()$A
algebra is not commutative this is not a Jordan algebra

\label{eq20} \mbox{\rm false} (20)
Type: BOOLEAN
fricas
leftAlternative?()$A
algebra is left alternative

\label{eq21} \mbox{\rm true} (21)
Type: BOOLEAN
fricas
lieAdmissible?()$A
algebra is Lie admissible

\label{eq22} \mbox{\rm true} (22)
Type: BOOLEAN
fricas
lieAlgebra?()$A
algebra is not anti-commutative this is not a Lie algebra

\label{eq23} \mbox{\rm false} (23)
Type: BOOLEAN
fricas
powerAssociative?()$A
Internal Error The function powerAssociative? with signature hashcode is missing from domain AlgebraGivenByStructuralConstants (Fraction (DistributedMultivariatePolynomial ((*01m p) (*01m q) (*01m r) (*01γ pp) (*01γ pq) (*01γ pr) (*01γ qp) (*01γ qq) (*01γ qr) (*01γ rp) (*01γ rq) (*01γ rr)) (Integer))) 9(p q r pq pr qp qr rp rq)UNPRINTABLE

Check Multiplication

fricas
AB := entries basis()$A

\label{eq24}\left[ p , \: q , \: r , \: pq , \: pr , \: qp , \: qr , \: rp , \: rq \right](24)
Type: LIST(ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]))
fricas
A2MK(z:A):MK==reduce(+,map((x:R,y:M):MK+->(x::K)*y,coordinates(z),basis))
Function declaration A2MK : ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp ,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9 ,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX, MATRIX,MATRIX,MATRIX,MATRIX]) -> FM(FRAC(POLY(INT)),FMONOID(OVAR( [p,q,r]))) has been added to workspace.
Type: VOID
fricas
test(MT=map(x+->map(A2MK,x),[[i*j for j in AB] for i in AB]))
fricas
Compiling function A2MK with type ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,
      *01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],
      INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,
      MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]) -> FM(FRAC(POLY(INT)),
      FMONOID(OVAR([p,q,r])))

\label{eq25} \mbox{\rm true} (25)
Type: BOOLEAN

Trace

fricas
[rightTrace(i)$A for i in AB]

\label{eq26}\begin{array}{@{}l}
\displaystyle
\left[{3 \ {m_{p}}\ {��_{pp}}}, \:{3 \ {m_{q}}\ {��_{qq}}}, \:{3 \ {m_{r}}\ {��_{rr}}}, \:{3 \ {m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{3 \ {m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: \right.
\
\
\displaystyle
\left.{3 \ {m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{3 \ {m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}, \:{3 \ {m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: \right.
\
\
\displaystyle
\left.{3 \ {m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}\right] 
(26)
Type: LIST(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
[leftTrace(i)$A for i in AB]

\label{eq27}\begin{array}{@{}l}
\displaystyle
\left[{3 \ {m_{p}}\ {��_{pp}}}, \:{3 \ {m_{q}}\ {��_{qq}}}, \:{3 \ {m_{r}}\ {��_{rr}}}, \:{3 \ {m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{3 \ {m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: \right.
\
\
\displaystyle
\left.{3 \ {m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{3 \ {m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}, \:{3 \ {m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: \right.
\
\
\displaystyle
\left.{3 \ {m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}\right] 
(27)
Type: LIST(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
trace(i)==rightTrace(i) / #gens
Type: VOID
fricas
[trace(i) for i in AB]
fricas
Compiling function trace with type ALGSC(FRAC(DMP([*01mp,*01mq,*01mr
      ,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],
      INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,
      MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]) -> FRAC(DMP([*01mp,*01mq,
      *01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,
      *01γrr],INT))

\label{eq28}\begin{array}{@{}l}
\displaystyle
\left[{{m_{p}}\ {��_{pp}}}, \:{{m_{q}}\ {��_{qq}}}, \:{{m_{r}}\ {��_{rr}}}, \:{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \: \right.
\
\
\displaystyle
\left.{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}, \:{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}, \:{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}, \:{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}\right] (28)
Type: LIST(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))

Scalar Product

fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.1,AB.2,AB.3]]

\label{eq29}\left[ 
\begin{array}{ccc}
{{{m_{p}}^{2}}\ {{��_{pp}}^{2}}}&{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}
\
{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}&{{{m_{q}}^{2}}\ {{��_{qq}}^{2}}}&{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}&{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}&{{{m_{r}}^{2}}\ {{��_{rr}}^{2}}}
(29)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.4,AB.5,AB.6]]

\label{eq30}\left[ 
\begin{array}{ccc}
{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}
\
{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}
\
{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}
(30)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.7,AB.8,AB.9]]

\label{eq31}\left[ 
\begin{array}{ccc}
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
\
{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}
\
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
(31)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.1,AB.2,AB.3]]

\label{eq32}\left[ 
\begin{array}{ccc}
{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}
\
{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}
\
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}
(32)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.4,AB.5,AB.6]]

\label{eq33}\left[ 
\begin{array}{ccc}
{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {{��_{pq}}^{2}}\ {{��_{qp}}^{2}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}
\
{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {{��_{pr}}^{2}}\ {{��_{rp}}^{2}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}
\
{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {{��_{pq}}^{2}}\ {{��_{qp}}^{2}}}
(33)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.7,AB.8,AB.9]]

\label{eq34}\left[ 
\begin{array}{ccc}
{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}
\
{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}
\
{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{qq}}\ {��_{rq}}}
(34)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.1,AB.2,AB.3]]

\label{eq35}\left[ 
\begin{array}{ccc}
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}
\
{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}
\
{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
(35)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.4,AB.5,AB.6]]

\label{eq36}\left[ 
\begin{array}{ccc}
{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}
\
{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{qq}}\ {��_{rq}}}
(36)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.7,AB.8,AB.9]]

\label{eq37}\left[ 
\begin{array}{ccc}
{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {{��_{qr}}^{2}}\ {{��_{rq}}^{2}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
\
{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {{��_{pr}}^{2}}\ {{��_{rp}}^{2}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}
\
{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {{��_{qr}}^{2}}\ {{��_{rq}}^{2}}}
(37)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))

Center

fricas
C:=basisOfCenter()$AlgebraPackage(R,A); # C

\label{eq38}1(38)
Type: PI
fricas
c:=C(1)

\label{eq39}\begin{array}{@{}l}
\displaystyle
rq +{{{-{{m_{q}}\ {��_{qp}}\ {{��_{rq}}^{2}}}+{{m_{q}}\ {��_{qq}}\ {��_{rp}}\ {��_{rq}}}}\over{{{m_{p}}\ {��_{pp}}\ {��_{rp}}\ {��_{rq}}}-{{m_{p}}\ {��_{pq}}\ {{��_{rp}}^{2}}}}}\  rp}+ 
\
\
\displaystyle
{{{{{��_{pp}}\ {��_{qr}}\ {��_{rq}}}-{{��_{pr}}\ {��_{qp}}\ {��_{rq}}}}\over{{{��_{pp}}\ {��_{qr}}\ {��_{rq}}}-{{��_{pq}}\ {��_{qr}}\ {��_{rp}}}}}\  qr}+{{{{{m_{r}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}-{{m_{r}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}}\over{{{m_{p}}\ {��_{pp}}\ {��_{qp}}\ {��_{rq}}}-{{m_{p}}\ {��_{pq}}\ {��_{qp}}\ {��_{rp}}}}}\  qp}+ 
\
\
\displaystyle
{{{-{{m_{q}}\ {��_{pq}}\ {��_{qr}}\ {��_{rq}}}+{{m_{q}}\ {��_{pr}}\ {��_{qq}}\ {��_{rq}}}}\over{{{m_{p}}\ {��_{pp}}\ {��_{pr}}\ {��_{rq}}}-{{m_{p}}\ {��_{pq}}\ {��_{pr}}\ {��_{rp}}}}}\  pr}+ 
\
\
\displaystyle
{{{{{m_{r}}\ {��_{pq}}\ {��_{rq}}\ {��_{rr}}}-{{m_{r}}\ {��_{pr}}\ {{��_{rq}}^{2}}}}\over{{{m_{p}}\ {��_{pp}}\ {��_{pq}}\ {��_{rq}}}-{{m_{p}}\ {{��_{pq}}^{2}}\ {��_{rp}}}}}\  pq}+ 
\
\
\displaystyle
{{{-{{m_{q}}\ {��_{pp}}\ {��_{qq}}\ {��_{rq}}}+{{m_{q}}\ {��_{pq}}\ {��_{qp}}\ {��_{rq}}}}\over{{{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}}}\  r}+ 
\
\
\displaystyle
{{{-{{m_{r}}\ {��_{pp}}\ {��_{rq}}\ {��_{rr}}}+{{m_{r}}\ {��_{pr}}\ {��_{rp}}\ {��_{rq}}}}\over{{{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}}}\  q}+ 
\
\
\displaystyle
{{{-{{m_{q}}\ {m_{r}}\ {��_{qq}}\ {��_{rq}}\ {��_{rr}}}+{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {{��_{rq}}^{2}}}}\over{{{m_{p}}\ {��_{pp}}\ {��_{rq}}}-{{m_{p}}\ {��_{pq}}\ {��_{rp}}}}}\  p}
(39)
Type: ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX])
fricas
[c*i-i*c for i in AB]

\label{eq40}\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right](40)
Type: LIST(ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]))
fricas
test(c*c=c)

\label{eq41} \mbox{\rm false} (41)
Type: BOOLEAN

Unit

fricas
rightTrace(c)

\label{eq42}{\left(
\begin{array}{@{}l}
\displaystyle
-{9 \ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{qq}}\ {��_{rq}}\ {��_{rr}}}+{9 \ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{qr}}\ {{��_{rq}}^{2}}}+ 
\
\
\displaystyle
{9 \ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}-{9 \ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}- 
\
\
\displaystyle
{9 \ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {{��_{rq}}^{2}}}+{9 \ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qq}}\ {��_{rp}}\ {��_{rq}}}
(42)
Type: FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
fricas
n := #basis / rightTrace(c) * c

\label{eq43}\begin{array}{@{}l}
\displaystyle
{{{-{{��_{pp}}\ {��_{rq}}}+{{��_{pq}}\ {��_{rp}}}}\over{\left(
\begin{array}{@{}l}
\displaystyle
{{m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{qq}}\ {��_{rq}}\ {��_{rr}}}-{{m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{qr}}\ {{��_{rq}}^{2}}}- 
\
\
\displaystyle
{{m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}+{{m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}+ 
\
\
\displaystyle
{{m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {{��_{rq}}^{2}}}-{{m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qq}}\ {��_{rp}}\ {��_{rq}}}
(43)
Type: ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX])
fricas
trace(n)

\label{eq44}3(44)
Type: FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
fricas
test(n*n=n)

\label{eq45} \mbox{\rm true} (45)
Type: BOOLEAN
fricas
[n*i-i for i in AB]

\label{eq46}\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right](46)
Type: LIST(ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]))
fricas
[i*n-i for i in AB]

\label{eq47}\left[ 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0, \: 0 \right](47)
Type: LIST(ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX]))

fricas
test(n=unit()$A)

\label{eq48} \mbox{\rm true} (48)
Type: BOOLEAN
fricas
f:=gcd map(x+->denom x,coordinates(n))

\label{eq49}{{��_{pp}}\ {��_{qq}}\ {��_{rr}}}-{{��_{pp}}\ {��_{qr}}\ {��_{rq}}}-{{��_{pq}}\ {��_{qp}}\ {��_{rr}}}+{{��_{pq}}\ {��_{qr}}\ {��_{rp}}}+{{��_{pr}}\ {��_{qp}}\ {��_{rq}}}-{{��_{pr}}\ {��_{qq}}\ {��_{rp}}}(49)
Type: DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)
fricas
ff:= matrix [[γ(i,j)::R for j in gens] for i in gens]

\label{eq50}\left[ 
\begin{array}{ccc}
{��_{pp}}&{��_{pq}}&{��_{pr}}
\
{��_{qp}}&{��_{qq}}&{��_{qr}}
\
{��_{rp}}&{��_{rq}}&{��_{rr}}
(50)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
test(f = determinant(ff))

\label{eq51} \mbox{\rm true} (51)
Type: BOOLEAN
fricas
(f*n)::OutputForm / f::OutputForm

\label{eq52}{\left(
\begin{array}{@{}l}
\displaystyle
{{{-{{��_{pp}}\ {��_{rq}}}+{{��_{pq}}\ {��_{rp}}}}\over{{m_{q}}\ {m_{r}}\ {��_{rq}}}}\  rq}+{{{{{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}}\over{{m_{p}}\ {m_{r}}\ {��_{rp}}}}\  rp}+ 
\
\
\displaystyle
{{{-{{��_{pp}}\ {��_{qr}}}+{{��_{pr}}\ {��_{qp}}}}\over{{m_{q}}\ {m_{r}}\ {��_{qr}}}}\  qr}+{{{-{{��_{qp}}\ {��_{rr}}}+{{��_{qr}}\ {��_{rp}}}}\over{{m_{p}}\ {m_{q}}\ {��_{qp}}}}\  qp}+ 
\
\
\displaystyle
{{{{{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}}\over{{m_{p}}\ {m_{r}}\ {��_{pr}}}}\  pr}+{{{-{{��_{pq}}\ {��_{rr}}}+{{��_{pr}}\ {��_{rq}}}}\over{{m_{p}}\ {m_{q}}\ {��_{pq}}}}\  pq}+ 
\
\
\displaystyle
{{{{{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}}\over{m_{r}}}\  r}+{{{{{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}}\over{m_{q}}}\  q}+{{{{{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}}\over{m_{p}}}\  p}
(52)
Type: OUTFORM

Symmetric γ

fricas
eqSymm:List Equation EXPR INT := concat [[(i>j => γ(i,j)=γ(i,j);i=j =>γ(i,j)=γ(i,j);γ(i,j)=γ(j,i)) for j in gens] for i in gens]

\label{eq53}\begin{array}{@{}l}
\displaystyle
\left[{{��_{pp}}={��_{pp}}}, \:{{��_{pq}}={��_{pq}}}, \:{{��_{pr}}={��_{pr}}}, \:{{��_{qp}}={��_{pq}}}, \:{{��_{qq}}={��_{qq}}}, \:{{��_{qr}}={��_{qr}}}, \:{{��_{rp}}={��_{pr}}}, \right.
\
\
\displaystyle
\left.\:{{��_{rq}}={��_{qr}}}, \:{{��_{rr}}={��_{rr}}}\right] (53)
Type: LIST(EQ(EXPR(INT)))
fricas
symm(x:R):R == subst(x::EXPR INT, eqSymm)::FRAC POLY INT
Function declaration symm : FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γ pq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)) -> FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq, *01γqr,*01γrp,*01γrq,*01γrr],INT)) has been added to workspace.
Type: VOID
fricas
(symm(f)*map(symm ,coordinates(n))::A)::OutputForm / symm(f)::OutputForm
fricas
Compiling function symm with type FRAC(DMP([*01mp,*01mq,*01mr,*01γpp
      ,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
       -> FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γ
      qq,*01γqr,*01γrp,*01γrq,*01γrr],INT))

\label{eq54}{\left(
\begin{array}{@{}l}
\displaystyle
{{{-{{��_{pp}}\ {��_{qr}}}+{{��_{pq}}\ {��_{pr}}}}\over{{m_{q}}\ {m_{r}}\ {��_{qr}}}}\  rq}+{{{{{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}}\over{{m_{p}}\ {m_{r}}\ {��_{pr}}}}\  rp}+ 
\
\
\displaystyle
{{{-{{��_{pp}}\ {��_{qr}}}+{{��_{pq}}\ {��_{pr}}}}\over{{m_{q}}\ {m_{r}}\ {��_{qr}}}}\  qr}+{{{-{{��_{pq}}\ {��_{rr}}}+{{��_{pr}}\ {��_{qr}}}}\over{{m_{p}}\ {m_{q}}\ {��_{pq}}}}\  qp}+ 
\
\
\displaystyle
{{{{{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}}\over{{m_{p}}\ {m_{r}}\ {��_{pr}}}}\  pr}+{{{-{{��_{pq}}\ {��_{rr}}}+{{��_{pr}}\ {��_{qr}}}}\over{{m_{p}}\ {m_{q}}\ {��_{pq}}}}\  pq}+ 
\
\
\displaystyle
{{{{{��_{pp}}\ {��_{qq}}}-{{��_{pq}}^{2}}}\over{m_{r}}}\  r}+{{{{{��_{pp}}\ {��_{rr}}}-{{��_{pr}}^{2}}}\over{m_{q}}}\  q}+{{{{{��_{qq}}\ {��_{rr}}}-{{��_{qr}}^{2}}}\over{m_{p}}}\  p}
(54)
Type: OUTFORM

Antisymmetric γ

fricas
eqAnti:List Equation EXPR INT := concat [[(i>j => γ(i,j)=γ(i,j);i=j =>γ(i,j)=0;γ(i,j)=-γ(j,i)) for j in gens] for i in gens]

\label{eq55}\begin{array}{@{}l}
\displaystyle
\left[{{��_{pp}}= 0}, \:{{��_{pq}}={��_{pq}}}, \:{{��_{pr}}={��_{pr}}}, \:{{��_{qp}}= -{��_{pq}}}, \:{{��_{qq}}= 0}, \:{{��_{qr}}={��_{qr}}}, \: \right.
\
\
\displaystyle
\left.{{��_{rp}}= -{��_{pr}}}, \:{{��_{rq}}= -{��_{qr}}}, \:{{��_{rr}}= 0}\right] 
(55)
Type: LIST(EQ(EXPR(INT)))
fricas
anti(x:R):R == subst(x::EXPR INT, eqAnti)::FRAC POLY INT
Function declaration anti : FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γ pq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)) -> FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq, *01γqr,*01γrp,*01γrq,*01γrr],INT)) has been added to workspace.
Type: VOID
fricas
(anti(f)*map(anti ,coordinates(n))::A)::OutputForm / anti(f)::OutputForm
fricas
Compiling function anti with type FRAC(DMP([*01mp,*01mq,*01mr,*01γpp
      ,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
       -> FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γ
      qq,*01γqr,*01γrp,*01γrq,*01γrr],INT)) 
>> Error detected within library code: catdef: division by zero

Momentum

fricas
P:=reduce(+,concat [[(1/γ(basis(i),basis(j)))::R*AB(i)*AB(j) for j in 1..size()$V] for i in 1..size()$V])

\label{eq56}\begin{array}{@{}l}
\displaystyle
{{1 \over{��_{rq}}}\  rq}+{{1 \over{��_{rp}}}\  rp}+{{1 \over{��_{qr}}}\  qr}+{{1 \over{��_{qp}}}\  qp}+{{1 \over{��_{pr}}}\  pr}+{{1 \over{��_{pq}}}\  pq}+{{m_{r}}\  r}+ 
\
\
\displaystyle
{{m_{q}}\  q}+{{m_{p}}\  p}
(56)
Type: ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX])
fricas
trace(P)

\label{eq57}\begin{array}{@{}l}
\displaystyle
{{{m_{p}}^{2}}\ {��_{pp}}}+{{m_{p}}\ {m_{q}}\ {��_{pq}}}+{{m_{p}}\ {m_{q}}\ {��_{qp}}}+{{m_{p}}\ {m_{r}}\ {��_{pr}}}+{{m_{p}}\ {m_{r}}\ {��_{rp}}}+ 
\
\
\displaystyle
{{{m_{q}}^{2}}\ {��_{qq}}}+{{m_{q}}\ {m_{r}}\ {��_{qr}}}+{{m_{q}}\ {m_{r}}\ {��_{rq}}}+{{{m_{r}}^{2}}\ {��_{rr}}}
(57)
Type: FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
fricas
c:=1/trace(P)*P

\label{eq58}\begin{array}{@{}l}
\displaystyle
{{1 \over{\left(
\begin{array}{@{}l}
\displaystyle
{{{m_{p}}^{2}}\ {��_{pp}}\ {��_{rq}}}+{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{rq}}}+{{m_{p}}\ {m_{q}}\ {��_{qp}}\ {��_{rq}}}+ 
\
\
\displaystyle
{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rq}}}+{{m_{p}}\ {m_{r}}\ {��_{rp}}\ {��_{rq}}}+{{{m_{q}}^{2}}\ {��_{qq}}\ {��_{rq}}}+ 
\
\
\displaystyle
{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}+{{m_{q}}\ {m_{r}}\ {{��_{rq}}^{2}}}+{{{m_{r}}^{2}}\ {��_{rq}}\ {��_{rr}}}
(58)
Type: ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX])
fricas
c*c-c

\label{eq59}0(59)
Type: ALGSC(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX,MATRIX])
fricas
trace(c)

\label{eq60}1(60)
Type: FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))

Scalar Product

fricas
S := matrix [[trace(x*y) for y in AB] for x in AB]

\label{eq61}\left[ 
\begin{array}{ccccccccc}
{{{m_{p}}^{2}}\ {{��_{pp}}^{2}}}&{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{q}}\ {��_{pq}}\ {��_{qp}}}&{{{m_{q}}^{2}}\ {{��_{qq}}^{2}}}&{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{r}}\ {��_{pr}}\ {��_{rp}}}&{{m_{q}}\ {m_{r}}\ {��_{qr}}\ {��_{rq}}}&{{{m_{r}}^{2}}\ {{��_{rr}}^{2}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
\
{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {{��_{pq}}^{2}}\ {{��_{qp}}^{2}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}
\
{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {{��_{pr}}^{2}}\ {{��_{rp}}^{2}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}
\
{{{m_{p}}^{2}}\ {m_{q}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {��_{pp}}\ {��_{pq}}\ {��_{qp}}\ {��_{qq}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {{m_{q}}^{2}}\ {{��_{pq}}^{2}}\ {{��_{qp}}^{2}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{qq}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {{��_{qr}}^{2}}\ {{��_{rq}}^{2}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}
\
{{{m_{p}}^{2}}\ {m_{r}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{m_{p}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pp}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {��_{pp}}\ {��_{pr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {m_{q}}\ {m_{r}}\ {��_{pq}}\ {��_{pr}}\ {��_{qp}}\ {��_{rp}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pq}}\ {��_{qr}}\ {��_{rp}}\ {��_{rr}}}&{{{m_{p}}^{2}}\ {{m_{r}}^{2}}\ {{��_{pr}}^{2}}\ {{��_{rp}}^{2}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}
\
{{m_{p}}\ {m_{q}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {m_{r}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}}&{{m_{q}}\ {{m_{r}}^{2}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pq}}\ {��_{qp}}\ {��_{qr}}\ {��_{rq}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qp}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {{m_{q}}^{2}}\ {m_{r}}\ {��_{pr}}\ {��_{qp}}\ {��_{qq}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {��_{qq}}\ {��_{qr}}\ {��_{rq}}\ {��_{rr}}}&{{m_{p}}\ {m_{q}}\ {{m_{r}}^{2}}\ {��_{pr}}\ {��_{qr}}\ {��_{rp}}\ {��_{rq}}}&{{{m_{q}}^{2}}\ {{m_{r}}^{2}}\ {{��_{qr}}^{2}}\ {{��_{rq}}^{2}}}
(61)
Type: MATRIX(FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT)))
fricas
determinant(S)/f^(2*#gens)

\label{eq62}-{{{m_{p}}^{10}}\ {{m_{q}}^{10}}\ {{m_{r}}^{10}}\ {{��_{pq}}^{2}}\ {{��_{pr}}^{2}}\ {{��_{qp}}^{2}}\ {{��_{qr}}^{2}}\ {{��_{rp}}^{2}}\ {{��_{rq}}^{2}}}(62)
Type: FRAC(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))
fricas
C:=map(x+->factor(numer(x))/factor(denom(x)),inverse(S/f^2))

\label{eq63}\left[ 
\begin{array}{ccccccccc}
{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}^{2}}\over{{m_{p}}^{2}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{m_{q}}\ {m_{p}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{m_{r}}\ {m_{p}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{��_{pq}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{pr}}\ {m_{r}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {m_{q}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{qr}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {m_{r}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{��_{rq}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}
\
{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{m_{q}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}^{2}}\over{{m_{q}}^{2}}}&{{{\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{m_{r}}\ {m_{q}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{pq}}\ {{m_{q}}^{2}}\ {m_{p}}}}&{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{pr}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {m_{r}}\ {{m_{q}}^{2}}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {m_{r}}\ {{m_{q}}^{2}}}}
\
{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{m_{r}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{m_{r}}\ {m_{q}}}}&{{{\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}^{2}}\over{{m_{r}}^{2}}}& -{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{pq}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{pr}}\ {{m_{r}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qp}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {{m_{r}}^{2}}\ {m_{q}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {{m_{r}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {{m_{r}}^{2}}\ {m_{q}}}}
\
-{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{��_{pq}}\ {m_{q}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{pq}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{pq}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}^{2}}\over{{{��_{pq}}^{2}}\ {{m_{q}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{pr}}\ {��_{pq}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {��_{pq}}\ {{m_{q}}^{2}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qr}}\ {��_{pq}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {��_{pq}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{pq}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}
\
{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{pr}}\ {m_{r}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{pr}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{pr}}\ {{m_{r}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{pr}}\ {��_{pq}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}^{2}}\over{{{��_{pr}}^{2}}\ {{m_{r}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qp}}\ {��_{pr}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}
\
-{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {m_{q}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qp}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qp}}\ {��_{pq}}\ {{m_{q}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qp}}\ {��_{pr}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}^{2}}\over{{{��_{qp}}^{2}}\ {{m_{q}}^{2}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {��_{qp}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {��_{qp}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{qp}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}
\
-{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}}\over{{��_{qr}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {m_{r}}\ {{m_{q}}^{2}}}}& -{{{\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {{m_{r}}^{2}}\ {m_{q}}}}&{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{qr}}\ {��_{pq}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pq}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qq}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}}\over{{��_{qr}}\ {��_{qp}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{qr}}}-{{��_{pr}}\ {��_{qp}}}\right)}^{2}}\over{{{��_{qr}}^{2}}\ {{m_{r}}^{2}}\ {{m_{q}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {��_{qr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {��_{qr}}\ {{m_{r}}^{2}}\ {{m_{q}}^{2}}}}
\
{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {m_{r}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {{m_{r}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {��_{pq}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}&{{{\left({{��_{qq}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}}\over{{��_{rp}}\ {��_{qp}}\ {m_{r}}\ {m_{q}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rr}}}-{{��_{qr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rp}}\ {��_{qr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}^{2}}\over{{{��_{rp}}^{2}}\ {{m_{r}}^{2}}\ {{m_{p}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{rp}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}
\
-{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}}\over{{��_{rq}}\ {m_{r}}\ {m_{q}}\ {m_{p}}}}& -{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {m_{r}}\ {{m_{q}}^{2}}}}& -{{{\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {{m_{r}}^{2}}\ {m_{q}}}}&{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{pq}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}& -{{{\left({{��_{pq}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rq}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {��_{pr}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{qp}}\ {m_{r}}\ {{m_{q}}^{2}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{rr}}}-{{��_{pr}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{qq}}}-{{��_{pq}}\ {��_{qp}}}\right)}}\over{{��_{rq}}\ {��_{qr}}\ {{m_{r}}^{2}}\ {{m_{q}}^{2}}}}& -{{{\left({{��_{qp}}\ {��_{rq}}}-{{��_{qq}}\ {��_{rp}}}\right)}\ {\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}}\over{{��_{rq}}\ {��_{rp}}\ {{m_{r}}^{2}}\ {m_{q}}\ {m_{p}}}}&{{{\left({{��_{pp}}\ {��_{rq}}}-{{��_{pq}}\ {��_{rp}}}\right)}^{2}}\over{{{��_{rq}}^{2}}\ {{m_{r}}^{2}}\ {{m_{q}}^{2}}}}
(63)
Type: MATRIX(FRAC(FR(DMP([*01mp,*01mq,*01mr,*01γpp,*01γpq,*01γpr,*01γqp,*01γqq,*01γqr,*01γrp,*01γrq,*01γrr],INT))))