Obs(3) is a 9 dimensional Frobenius Algrebra
fricas
(1) -> )set output abbreviate on
fricas
)set message type off
Generators of the algebra
fricas
V := OrderedVariableList [p,q,r]
fricas
M := FreeMonoid V
fricas
gens:List M := enumerate()$V
fricas
divisible := Record(lm: M,rm: M)
fricas
leftDiv(k:Union(divisible,"failed")):M == (k::divisible).lm
Function declaration leftDiv : Union(Record(lm: FMONOID(OVAR([p,q,r]
)),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p,q,r])
) has been added to workspace.
rightDiv(k:Union(divisible,"failed")):M == (k::divisible).rm
Function declaration rightDiv : Union(Record(lm: FMONOID(OVAR([p,q,r
])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p,q,r]
)) has been added to workspace.
K := FRAC POLY INT
fricas
MK := FreeModule(K,M)
fricas
coeff(x:MK):K == leadingCoefficient(x)
Function declaration coeff : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]
))) -> FRAC(POLY(INT)) has been added to workspace.
monomial(x:MK):M == leadingSupport(x)
Function declaration monomial : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q
,r]))) -> FMONOID(OVAR([p,q,r])) has been added to workspace.
m(x:M):K == subscript('m,[retract(x)::Symbol])
Function declaration m : FMONOID(OVAR([p,q,r])) -> FRAC(POLY(INT))
has been added to workspace.
γ(x:M,y:M):K == subscript('γ,[concat(string retract x, string retract y)::Symbol])
Function declaration γ : (FMONOID(OVAR([p,q,r])), FMONOID(OVAR([p,q,
r]))) -> FRAC(POLY(INT)) has been added to workspace.
Basis
fricas
basis := concat(gens,concat [[j*i for i in gens | i~=j] for j in gens])
Idempotent
fricas
rule1(ij:MK):MK ==
for k in gens repeat
kk := divide(monomial(ij),k*k)
if kk case divisible then
ij:=(coeff(ij) * m(k)*γ(k,k)) * (leftDiv(kk) * k * rightDiv(kk))
return(ij)
Function declaration rule1 : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]
))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added
to workspace.
Reduction
fricas
rule2(ij:MK):MK ==
for i in gens repeat
for j in gens | j ~= i repeat
for k in gens | k ~= j repeat
ijk:=divide(monomial(ij),i*j*k)
if ijk case divisible then
if i=k then
ij := (coeff(ij)*m(i)*m(j)*γ(i,j)*γ(j,i) ) * _
(leftDiv(ijk)*i*rightDiv(ijk))
else
ij := (coeff(ij)*m(j)*γ(i,j)*γ(j,k) / γ(i,k) ) * _
(leftDiv(ijk)*i*k*rightDiv(ijk))
return(ij)
Function declaration rule2 : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]
))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added
to workspace.
Modulo fixed point of applied rules
fricas
mod(ij:MK):MK ==
ijFix:MK := 1
while ijFix~=ij repeat
ijFix := ij
ij := rule1(ij)
ij := rule2(ij)
return(ij)
Function declaration mod : FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))
) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r]))) has been added to
workspace.
Matrix
Multiplication is monoidal concatenation modulo the fixed point
fricas
--MT := [[mod(i*j) for j in basis] for i in basis]
-- idempotent
MT := [[monomial(eval(coeff(mod(i*j)),[γ(gens(1),gens(1))=1,γ(gens(2),gens(2))=1,γ(gens(3),gens(3))=1,γ(gens(2),gens(1))=γ(gens(1),gens(2)),γ(gens(3),gens(2))=γ(gens(2),gens(3)),γ(gens(3),gens(1))=γ(gens(1),gens(3))]),monomial(mod(i*j)))$MK for j in basis] for i in basis]
fricas
Compiling function monomial with type FM(FRAC(POLY(INT)),FMONOID(
OVAR([p,q,r]))) -> FMONOID(OVAR([p,q,r]))
fricas
Compiling function coeff with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
p,q,r]))) -> FRAC(POLY(INT))
fricas
Compiling function m with type FMONOID(OVAR([p,q,r])) -> FRAC(POLY(
INT))
fricas
Compiling function γ with type (FMONOID(OVAR([p,q,r])), FMONOID(OVAR
([p,q,r]))) -> FRAC(POLY(INT))
fricas
Compiling function leftDiv with type Union(Record(lm: FMONOID(OVAR([
p,q,r])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([p
,q,r]))
fricas
Compiling function rightDiv with type Union(Record(lm: FMONOID(OVAR(
[p,q,r])),rm: FMONOID(OVAR([p,q,r]))),"failed") -> FMONOID(OVAR([
p,q,r]))
fricas
Compiling function rule1 with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
p,q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))
fricas
Compiling function rule2 with type FM(FRAC(POLY(INT)),FMONOID(OVAR([
p,q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))
fricas
Compiling function mod with type FM(FRAC(POLY(INT)),FMONOID(OVAR([p,
q,r]))) -> FM(FRAC(POLY(INT)),FMONOID(OVAR([p,q,r])))
Structure Constants
fricas
R:=FRAC DMP(concat [[m(i) for i in gens],concat [[γ(j,i) for i in gens] for j in gens]], INT)
fricas
mat3(y:M):List List R == map(z+->map(x+->coefficient(x,y)::FRAC POLY INT,z),MT)
Function declaration mat3 : FMONOID(OVAR([p,q,r])) -> LIST(LIST(FRAC
(DMP([m[p],m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[
rq],γ[rr]],INT)))) has been added to workspace.
ss:=map(mat3, basis)
fricas
Compiling function mat3 with type FMONOID(OVAR([p,q,r])) -> LIST(
LIST(FRAC(DMP([m[p],m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr]
,γ[rp],γ[rq],γ[rr]],INT))))
Algebra
fricas
cats(m:M):Symbol==concat(map(x+->string(x.gen::Symbol),factors m))::Symbol
Function declaration cats : FMONOID(OVAR([p,q,r])) -> SYMBOL has
been added to workspace.
A:=AlgebraGivenByStructuralConstants(R,#(basis)::PI,map(cats,basis),ss::Vector(Matrix R))
fricas
Compiling function cats with type FMONOID(OVAR([p,q,r])) -> SYMBOL
fricas
alternative?()$A
algebra satisfies 2*associator(a,b,b) = 0 = 2*associator(a,a,b) = 0
fricas
antiAssociative?()$A
algebra is not anti-associative
fricas
antiCommutative?()$A
algebra is not anti-commutative
fricas
associative?()$A
algebra is associative
fricas
commutative?()$A
algebra is not commutative
fricas
flexible?()$A
algebra is flexible
fricas
jacobiIdentity?()$A
Jacobi identity does not hold
fricas
jordanAdmissible?()$A
algebra is not Jordan admissible
fricas
jordanAlgebra?()$A
algebra is not commutative
this is not a Jordan algebra
fricas
leftAlternative?()$A
algebra is left alternative
fricas
rightAlternative?()$A
algebra is right alternative
fricas
lieAdmissible?()$A
algebra is Lie admissible
fricas
lieAlgebra?()$A
algebra is not anti-commutative
this is not a Lie algebra
fricas
powerAssociative?()$A
Internal Error
The function powerAssociative? with signature () -> BOOLEAN is
missing from domain AlgebraGivenByStructuralConstants
(Fraction (DistributedMultivariatePolynomial ((*01000m p) (*01000m q) (*01000m r) (*01000γ pp) (*01000γ pq) (*01000γ pr) (*01000γ qp) (*01000γ qq) (*01000γ qr) (*01000γ rp) (*01000γ rq) (*01000γ rr)) (Integer)))
9(p q r pq pr qp qr rp rq)UNPRINTABLE
Check Multiplication
fricas
AB := entries basis()$A
fricas
p:=AB(1); q:=AB(2); r:=AB(3);
A2MK(z:A):MK==reduce(+,map((x:R,y:M):MK+->(x::K)*y,coordinates(z),basis))
Function declaration A2MK : ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[pp],γ[
pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q,r,pq,
pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[
pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*γ[pq]
^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]
,0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0
,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[
0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,m
[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,0,0,0
,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ[pq]^
2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]]
,[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0,0,0,
m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0
,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]
^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,
0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[pr]^2
,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0],[0
,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[q]^2*
m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ[pq]]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq
]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0,m[p]
*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,
0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
,[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0,0,0,
0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*m[q]*
γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m[r]*γ
[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0
,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,
0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m
[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq],0,0,
0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,
0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,(m[p]
*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^
2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[p]*m[
r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,(
m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[
p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ[pr],
0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[[0,0,
0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr
],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p
]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,m[p]*
m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]) -> FM(FRAC(POLY(INT)),
FMONOID(OVAR([p,q,r]))) has been added to workspace.
test(MT=map(x+->map(A2MK,x),[[i*j for j in AB] for i in AB]))
fricas
Compiling function A2MK with type ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[
pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q
,r,pq,pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[
r]*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*
γ[pq]^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*
γ[qr],0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[
qr],0,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0]
,[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ
[pq]^2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ
[qr]],[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0
,0,0,m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]
],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*
γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[
pr]^2,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,
0],[0,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[
q]^2*m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ
[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]
*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0
,m[p]*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,
0,0]],[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*
m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m
[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,
0,0,0,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m
[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq]
,0,0,0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,
(m[p]*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(
m[p]^2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[
p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,
0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0
,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ
[pr],0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[
[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])
/γ[qr],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0
,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,
m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]) -> FM(FRAC(POLY(
INT)),FMONOID(OVAR([p,q,r])))
fricas
p*p
fricas
p*q*p
fricas
p*q*r
Trace
fricas
[rightTrace(i)$A for i in AB]
fricas
[leftTrace(i)$A for i in AB]
fricas
trace(i)==rightTrace(i) / #gens
trace(p)
fricas
Compiling function trace with type ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[
pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q
,r,pq,pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[
r]*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*
γ[pq]^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*
γ[qr],0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[
qr],0,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0]
,[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ
[pq]^2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ
[qr]],[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0
,0,0,m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]
],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*
γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[
pr]^2,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,
0],[0,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[
q]^2*m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ
[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]
*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0
,m[p]*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,
0,0]],[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*
m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m
[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,
0,0,0,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m
[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq]
,0,0,0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,
(m[p]*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(
m[p]^2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[
p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,
0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0
,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ
[pr],0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[
[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])
/γ[qr],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0
,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,
m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]) -> FRAC(DMP([m[p]
,m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]]
,INT))
fricas
[trace(i) for i in AB]
Lie Bracket
fricas
pq:=p*q-q*p
fricas
trace(pq)
Lie derivations
fricas
D(p:A):(A->A) == (q:A):A +-> (p*q - q*p)
Function declaration D : ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[pp],γ[pq],
γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q,r,pq,pr,
qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^
2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*γ[pq]^2,0
,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0],
[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[p
]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,m[q],
0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,0,0,0,0,0
],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ[pq]^2,0,
m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]],[0,
m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0,0,0,m[q]
*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0
,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[
0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[pr]^2,0,m
[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0],[0,0,m
[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[q]^2*m[r]
*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ[pq]],[0,
0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,
0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0,m[p]*m[r
]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0
,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0,0,0,0],[
0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*m[q]*γ[pq
]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]
^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,
0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],
[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*
γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq],0,0,0,0,
m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,
0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,(m[p]*γ[
pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ
[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[p]*m[r]*
γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,(m[q
]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0
,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*
m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ[pr],0,0
,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0
,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2
*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,m[p]*m[q
]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]) -> (ALGSC(FRAC(DMP([m[p],
m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],
INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]
^2,0,m[p]*m[r]*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]
,[m[p]*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*
γ[pq]*γ[pr]*γ[qr],0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[
pq]*γ[pr]*γ[qr],0,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,
0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^
2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0
,m[p]*m[q]*γ[pq]^2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ
[pq]*γ[pr]*γ[qr]],[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[
pr]*γ[qr],0,0,0,0,m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0
,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r]
,0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,m[p]*m[r]*γ[pr]^2,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ
[pr]*γ[qr],0,0],[0,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[
pr]*γ[qr],0,m[q]^2*m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*
γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[
q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*
γ[qr])/γ[pq],0,m[p]*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[
pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0]],[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,
0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr]
)/γ[pr],0,m[p]*m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,
0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0
]],[[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq
],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],
[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[
pr]*γ[qr])/γ[pq],0,0,0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])
/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,
0,0,0],[0,0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*
γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0
],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[1,0,0,0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,
0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q
]*γ[pq]*γ[qr])/γ[pr],0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[
r]*γ[qr]^2,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m
[p]*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq
]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[
pr]^2],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]])
-> ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],
γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[[[m[p
],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[0,0,0,0,0,0,0
,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]^2*
γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0],[m[p]*m[r]*γ[pr]^2,
0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[p]*m[r]^2*γ[pr]^2,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2
,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,
0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ[pq]^2,0,m[p]^2*m[q]*γ[pq]^2
,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]],[0,m[q]*m[r]*γ[qr]^2,0
,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0,0,0,m[q]*m[r]^2*γ[qr]^2],[0
,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,
0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],
[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[pr]^2,0,m[p]^2*m[r]*γ[pr]^2,
0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0],[0,0,m[q]*m[r]*γ[qr]^2,0,
m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[q]^2*m[r]*γ[qr]^2,0,0]],[[0,
1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0
,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ
[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0,m[p]*m[r]*γ[pr]^2,0,0,0,0,(
m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0
],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,1,0,m[p],0,(m[q]
*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],
[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]
*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr
]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,m[q],0,(
m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0
],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]
*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq],0,0,0,0,m[q]*m[r]*γ[qr]^2,0
,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0
,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,m
[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,
m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*
γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,(m[q]*γ[pq]*γ[qr])/γ[pr]
,0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0
,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*
m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ[pr],0,0,0,0,(m[q]^2*γ[pq]*γ
[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[r]],[0,0,0,
0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],
0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[
q]*m[r]*γ[qr]^2]]])) has been added to workspace.
(D p) p
fricas
Compiling function D with type ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[pp],
γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q,r,
pq,pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*
γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*γ[
pq]^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[
qr],0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr
],0,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0
],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[
0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,0,
0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ[
pq]^2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[
qr]],[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0,
0,0,m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]]
,[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*γ
[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[
pr]^2,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,
0],[0,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[
q]^2*m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ
[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]
*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0
,m[p]*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,
0,0]],[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*
m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m
[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,
0,0,0,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0
,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m
[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq]
,0,0,0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,
(m[p]*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(
m[p]^2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[
p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,
0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0
,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0
,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ
[pr],0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[
[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])
/γ[qr],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0
,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,
m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]) -> (ALGSC(FRAC(
DMP([m[p],m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp],γ[qq],γ[qr],γ[rp],γ[
rq],γ[rr]],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq],[[[m[p],0,0,0,0,m[p]
*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0
,0,0,0,0,0],[m[p]*m[q]*γ[pq]^2,0,0,0,0,m[p]*m[q]^2*γ[pq]^2,0,m[p]
*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0],[m[p]*m[r]*γ[pr]^2,0,0,0,0,m[p]*m
[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[p]*m[r]^2*γ[pr]^2,0],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0
]],[[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*
m[r]*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[0,m[p]*m[q]*γ[pq]^2,0,m[p]^2*m[q]*γ[pq]^2,0,0,0,0,m[p]*
m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]],[0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r
]*γ[pq]*γ[pr]*γ[qr],0,0,0,0,m[q]*m[r]^2*γ[qr]^2],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]
,[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0
,0,0],[0,0,m[p]*m[r]*γ[pr]^2,0,m[p]^2*m[r]*γ[pr]^2,0,m[p]*m[q]*m[
r]*γ[pq]*γ[pr]*γ[qr],0,0],[0,0,m[q]*m[r]*γ[qr]^2,0,m[p]*m[q]*m[r]
*γ[pq]*γ[pr]*γ[qr],0,m[q]^2*m[r]*γ[qr]^2,0,0]],[[0,1,0,m[p],0,0,0
,0,(m[r]*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,(m[
r]*γ[pr]*γ[qr])/γ[pq],0,m[p]*m[r]*γ[pr]^2,0,0,0,0,(m[r]^2*γ[pr]*γ
[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0
,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,1,0,m[p],0,(m[q]*γ[pq]*γ[qr])/
γ[pr],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[q]*γ[
pq]*γ[qr])/γ[pr],0,m[p]*m[q]*γ[pq]^2,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr]
,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,m[q],0,(m[r]*γ[pr]*γ[
qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[
(m[r]*γ[pr]*γ[qr])/γ[pq],0,0,0,0,m[q]*m[r]*γ[qr]^2,0,(m[r]^2*γ[pr
]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,
0,0,0,0,0,0,0],[0,0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,m[q],0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,(m[p
]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,m[p]*m[q]*γ[
pq]^2,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]*γ[qr]^2,0,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0
,0,0,0,0,0,0,0,0],[1,0,0,0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[r],0],[
0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0
,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2
,0],[(m[q]*γ[pq]*γ[qr])/γ[pr],0,0,0,0,(m[q]^2*γ[pq]*γ[qr])/γ[pr],
0,m[q]*m[r]*γ[qr]^2,0]],[[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],
[0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[r]],[0,0,0,0,0,0,0,0,0]
,[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,(
m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[p]
*m[r]*γ[pr]^2],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr
]^2]]]) -> ALGSC(FRAC(DMP([m[p],m[q],m[r],γ[pp],γ[pq],γ[pr],γ[qp]
,γ[qq],γ[qr],γ[rp],γ[rq],γ[rr]],INT)),9,[p,q,r,pq,pr,qp,qr,rp,rq]
,[[[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,m[p]*m[r]*γ[pr]^2,0],[0,0,0,
0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p]*m[q]*γ[pq]^2,0,0,0,0,m[p]*
m[q]^2*γ[pq]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0],[m[p]*m[r]*γ
[pr]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[p]*m[r]^2*γ[
pr]^2,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]
*γ[pq]^2,0,0,0,0,m[q]*m[r]*γ[qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[p]*m[q]*γ[pq]^2,0,m[p]^2*m[q]
*γ[pq]^2,0,0,0,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr]],[0,m[q]*m[r]*γ
[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0,0,0,m[q]*m[r]^2*γ[
qr]^2],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0
,0],[0,0,0,0,0,0,0,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*m[r]
*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,m[p]*m[r]*γ[pr]^2,0,m[p]^2*m[r]
*γ[pr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,0],[0,0,m[q]*m[r]*γ
[qr]^2,0,m[p]*m[q]*m[r]*γ[pq]*γ[pr]*γ[qr],0,m[q]^2*m[r]*γ[qr]^2,0
,0]],[[0,1,0,m[p],0,0,0,0,(m[r]*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,
0,0,0],[0,0,0,0,0,0,0,0,0],[0,m[q],0,m[p]*m[q]*γ[pq]^2,0,0,0,0,m[
q]*m[r]*γ[qr]^2],[0,(m[r]*γ[pr]*γ[qr])/γ[pq],0,m[p]*m[r]*γ[pr]^2,
0,0,0,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,1,0,m[p
],0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,
0,0,0,0],[0,0,(m[q]*γ[pq]*γ[qr])/γ[pr],0,m[p]*m[q]*γ[pq]^2,0,(m[q
]^2*γ[pq]*γ[qr])/γ[pr],0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m[q]*
m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,
0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[1,0,0,0,0
,m[q],0,(m[r]*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,
0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]^2,0,
m[p]*m[r]*γ[pr]^2,0],[(m[r]*γ[pr]*γ[qr])/γ[pq],0,0,0,0,m[q]*m[r]*
γ[qr]^2,0,(m[r]^2*γ[pr]*γ[qr])/γ[pq],0],[0,0,0,0,0,0,0,0,0],[0,0,
0,0,0,0,0,0,0]],[[0,0,0,0,0,0,0,0,0],[0,0,1,0,(m[p]*γ[pq]*γ[pr])/
γ[qr],0,m[q],0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,
0,0,0,0,0,0],[0,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[pr])
/γ[qr],0,m[p]*m[q]*γ[pq]^2,0,0],[0,0,m[r],0,m[p]*m[r]*γ[pr]^2,0,m
[q]*m[r]*γ[qr]^2,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0]],[[
0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[1,0,0,0,0,(m[q]*γ[pq]*γ[
qr])/γ[pr],0,m[r],0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0
,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[m[p],0,0,0,0,m[p]*m[q]*γ[pq]
^2,0,m[p]*m[r]*γ[pr]^2,0],[(m[q]*γ[pq]*γ[qr])/γ[pr],0,0,0,0,(m[q]
^2*γ[pq]*γ[qr])/γ[pr],0,m[q]*m[r]*γ[qr]^2,0]],[[0,0,0,0,0,0,0,0,0
],[0,0,0,0,0,0,0,0,0],[0,1,0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,0,0,0,m[r
]],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0],[0
,0,0,0,0,0,0,0,0],[0,(m[p]*γ[pq]*γ[pr])/γ[qr],0,(m[p]^2*γ[pq]*γ[
pr])/γ[qr],0,0,0,0,m[p]*m[r]*γ[pr]^2],[0,m[q],0,m[p]*m[q]*γ[pq]^2
,0,0,0,0,m[q]*m[r]*γ[qr]^2]]]))
fricas
test( (D p)(q*r) = (D p)(q)*r + q*(D p)(r) )
fricas
-- Define ((D p) (D q)) r =
(D p) ((D q) r) - (D q) ((D p) r)
fricas
--
(D p) q
fricas
(D p) ((D p) q)
fricas
(D p) ((D p) ((D p) q))
fricas
test( (D p) ((D p) ((D p) q)) = trace(p)^2*(D p) q )
fricas
test( (D p) ((D p) ((D p) ((D q) r))) = trace(p)^2*(D p) ((D q) r) )
fricas
--
(D p) ((D q) ((D p) r))
fricas
(D q) ((D p) ((D q) r))
fricas
(D p) ((D p) ((D q) r))
fricas
(D p) ((D q) ((D q) r))
Scalar Product
fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.1,AB.2,AB.3]]
fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.4,AB.5,AB.6]]
fricas
matrix [[trace(i*j) for j in [AB.1,AB.2,AB.3]] for i in [AB.7,AB.8,AB.9]]
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.1,AB.2,AB.3]]
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.4,AB.5,AB.6]]
fricas
matrix [[trace(i*j) for j in [AB.4,AB.5,AB.6]] for i in [AB.7,AB.8,AB.9]]
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.1,AB.2,AB.3]]
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.4,AB.5,AB.6]]
fricas
matrix [[trace(i*j) for j in [AB.7,AB.8,AB.9]] for i in [AB.7,AB.8,AB.9]]
Center
fricas
C:=basisOfCenter()$AlgebraPackage(R,A); # C
fricas
c:=C(1)
fricas
[c*i-i*c for i in AB]
fricas
test(c*c=c)
Unit
fricas
rightTrace(c)
fricas
n := #basis / rightTrace(c) * c
fricas
trace(n)
fricas
test(n*n=n)
fricas
[n*i-i for i in AB]
fricas
[i*n-i for i in AB]
fricas
test(n=unit()$A)
fricas
f:=gcd map(x+->denom x,coordinates(n))
fricas
--ff:= matrix [[γ(i,j)::R for j in gens] for i in gens]
ff:= matrix [[eval(γ(i,j)::R,[γ(gens(1),gens(1))=1,γ(gens(2),gens(2))=1,γ(gens(3),gens(3))=1,γ(gens(2),gens(1))=γ(gens(1),gens(2)),γ(gens(3),gens(2))=γ(gens(2),gens(3)),γ(gens(3),gens(1))=γ(gens(1),gens(3))]) for j in gens] for i in gens]
fricas
--ff:= matrix [[eval(γ(i,j)::R,[γ(gens(1),gens(1))=0,γ(gens(2),gens(2))=0,γ(gens(3),gens(3))=0,γ(gens(2),gens(1))=γ(gens(1),gens(2)),γ(gens(3),gens(2))=γ(gens(2),gens(3)),γ(gens(3),gens(1))=γ(gens(1),gens(3))]) for j in gens] for i in gens]
-determinant(ff)
fricas
test(f = %)
fricas
(f*n)::OutputForm / f::OutputForm
Orthogonal Observers
fricas
p' := n - (1/trace(p))*p
fricas
trace(p')
fricas
p*p'
fricas
test(p'*p=p*p')
fricas
p'*p' - p'
fricas
f*p'
fricas
q' := n - (1/trace(q))*q
fricas
trace(q')
fricas
q*q'
fricas
test(q'*q=q*q')
fricas
q'*q' - q'
fricas
f*q'
Orthogonal Observers are not Derivations
fricas
p'*(q*r) = (p'*q)*r + q*(p'*r)
fricas
test %
Lie Bracket
fricas
pq:=p*q-q*p
fricas
trace(pq)
fricas
pqr:=pq*r
fricas
trace(pqr)
fricas
pqr*pqr
fricas
q' := n - (1/trace(q))*q
fricas
p'q' := p'*q' - q'*p'
fricas
trace(p'q')
fricas
p'q'r:=p'q'*r
fricas
trace(p'q'r)
fricas
p'q'r * p'q'r
fricas
p'q'r * pqr
fricas
pq' := p*q' - q'*p
fricas
trace(pq')
fricas
pq'r:=pq'*r
fricas
pq'r * pq'r
fricas
p'q := p'*q - q*p'
fricas
trace(p'q)
fricas
p'qr:=p'q*r
fricas
p'qr*p'qr
Momentum
fricas
P:=reduce(+,concat [[(1/ ( i<j=>γ(basis(i),basis(j)); i>j=>γ(basis(j),basis(i));1) )::R*AB(i)*AB(j) for j in 1..size()$V] for i in 1..size()$V])
fricas
M2:=trace(P)
fricas
P*P-trace(P)*P
fricas
P' := n - (1/trace(P))*P;
trace(P')
fricas
P'*P' - P'
fricas
P*P'
fricas
fP':=gcd map(x+->denom x,coordinates(P'))
fricas
factor(fP')
fricas
test(fP'=f*M2)
fricas
fP' * P'