login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxNonAssociativeAlgebra revision 9 of 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Editor: Bill Page
Time: 2008/04/24 15:08:22 GMT-7
Note: structural constants

changed:
-Author: Diego Saa
-
-(Submitted on 20 Nov 2007)
Author: Diego Saa (Submitted on 20 Nov 2007)

removed:
-\begin{axiom}
-all:=[a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]
-a:Vector DMP(all,INT):=[a1,a2,a3,a4]
-b:Vector DMP(all,INT):=[b1,b2,b3,b4]
-c:Vector DMP(all,INT):=[c1,c2,c3,c4]
--- Jordan?
-a ** (b ** c) + c ** (a ** b) + b ** (c ** a)
-a0:Vector DMP(all,INT):=[0,a2,a3,a4]
-b0:Vector DMP(all,INT):=[0,b2,b3,b4]
-c0:Vector DMP(all,INT):=[0,c2,c3,c4]
--- Jordan?
-a0 ** (b0 ** c0) + c0 ** (a0 ** b0) + b0 ** (c0 ** a0)
-(a0 ** b0) ** c0 + (c0 ** a0) ** b0 + (b0 ** c0) ** a0
-\end{axiom}
-

added:
)clear all

added:

The algebra above can be given by structural constants.
\begin{axiom}
sc:Vector Matrix Fraction Integer := [ _
[[ 1, 0, 0, 0], _
 [ 0, 1, 0, 0], _
 [ 0, 0, 1, 0], _
 [ 0, 0, 0, 1]], _
[[ 0, 1, 0, 0], _
 [-1, 0, 0, 0], _
 [ 0, 0, 0, 1], _
 [ 0, 0,-1, 0]], _
[[ 0, 0, 1, 0], _
 [ 0, 0, 0,-1], _
 [-1, 0, 0, 0], _
 [ 0, 1, 0, 0]], _
[[ 0, 0, 0, 1], _
 [ 0, 0, 1, 0], _
 [ 0,-1, 0, 0], _
 [-1, 0, 0, 0]]]
V:=AlgebraGivenByStructuralConstants(Fraction Integer, 4, [e,i,j,k],sc)
\end{axiom}

Ref: http://arxiv.org/abs/0711.3220

Fourvector algebra

Author: Diego Saa (Submitted on 20 Nov 2007)

Abstract: The algebra of fourvectors is described. The fourvectors are more appropriate than the Hamilton quaternions for its use in Physics and the sciences in general. The fourvectors embrace the 3D vectors in a natural form. It is shown the excellent ability to perform rotations with the use of fourvectors, as well as their use in relativity for producing Lorentz boosts, which are understood as simple rotations.

axiom
_*_*(x,y)==concat(x(1) * y(1) + dot(x(2..), y(2..)), x(1) * y(2..) - x(2..) * y(1) + cross(x(2..), y(2..)))
Type: Void
axiom
e:Vector INT:=[1,0,0,0]
LatexWiki Image(1)
Type: Vector Integer
axiom
i:Vector INT:=[0,1,0,0]
LatexWiki Image(2)
Type: Vector Integer
axiom
j:Vector INT:=[0,0,1,0]
LatexWiki Image(3)
Type: Vector Integer
axiom
k:Vector INT:=[0,0,0,1]
LatexWiki Image(4)
Type: Vector Integer
axiom
test(e**e=e)
axiom
Compiling function ** with type (Vector Integer,Vector Integer) -> 
      Vector Integer
LatexWiki Image(5)
Type: Boolean
axiom
test(i**i=e)
LatexWiki Image(6)
Type: Boolean
axiom
test(j**j=e)
LatexWiki Image(7)
Type: Boolean
axiom
test(k**k=e)
LatexWiki Image(8)
Type: Boolean
axiom
test(e**i=i)
LatexWiki Image(9)
Type: Boolean
axiom
test(e**j=j)
LatexWiki Image(10)
Type: Boolean
axiom
test(e**k=k)
LatexWiki Image(11)
Type: Boolean
axiom
test(i**e=-i)
LatexWiki Image(12)
Type: Boolean
axiom
test(j**e=-j)
LatexWiki Image(13)
Type: Boolean
axiom
test(k**e=-k)
LatexWiki Image(14)
Type: Boolean
axiom
test(i**j=k)
LatexWiki Image(15)
Type: Boolean
axiom
test(j**i=-k)
LatexWiki Image(16)
Type: Boolean
axiom
test(k**i=j)
LatexWiki Image(17)
Type: Boolean
axiom
test(i**k=-j)
LatexWiki Image(18)
Type: Boolean
axiom
test(j**k=i)
LatexWiki Image(19)
Type: Boolean
axiom
test(k**j=-i)
LatexWiki Image(20)
Type: Boolean

Axiom has a domain for NonAssociative? Algebra

This is documented in the article: Computations in Algebras of Fixed Rank by Johannes Grabmeir and Robert Wisbauer, from the book "Computational Algebra" By Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro.

axiom
)clear all All user variables and function definitions have been cleared. )show NonAssociativeAlgebra NonAssociativeAlgebra R: CommutativeRing is a category constructor Abbreviation for NonAssociativeAlgebra is NAALG This constructor is exposed in this frame. Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-linux/../../src/algebra/NAALG.spad to see algebra source code for NAALG ------------------------------- Operations -------------------------------- ?*? : (R,%) -> % ?*? : (%,R) -> % ?*? : (%,%) -> % ?*? : (Integer,%) -> % ?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) -> % ?+? : (%,%) -> % ?-? : (%,%) -> % -? : % -> % ?=? : (%,%) -> Boolean 0 : () -> % antiCommutator : (%,%) -> % associator : (%,%,%) -> % coerce : % -> OutputForm commutator : (%,%) -> % hash : % -> SingleInteger latex : % -> String sample : () -> % zero? : % -> Boolean ?~=? : (%,%) -> Boolean ?*? : (NonNegativeInteger,%) -> % leftPower : (%,PositiveInteger) -> % plenaryPower : (%,PositiveInteger) -> % rightPower : (%,PositiveInteger) -> % subtractIfCan : (%,%) -> Union(%,"failed")

The algebra above can be given by structural constants.

axiom
sc:Vector Matrix Fraction Integer := [ _ [[ 1, 0, 0, 0], _ [ 0, 1, 0, 0], _ [ 0, 0, 1, 0], _ [ 0, 0, 0, 1]], _ [[ 0, 1, 0, 0], _ [-1, 0, 0, 0], _ [ 0, 0, 0, 1], _ [ 0, 0,-1, 0]], _ [[ 0, 0, 1, 0], _ [ 0, 0, 0,-1], _ [-1, 0, 0, 0], _ [ 0, 1, 0, 0]], _ [[ 0, 0, 0, 1], _ [ 0, 0, 1, 0], _ [ 0,-1, 0, 0], _ [-1, 0, 0, 0]]]
LatexWiki Image(21)
Type: Vector Matrix Fraction Integer
axiom
V:=AlgebraGivenByStructuralConstants(Fraction Integer, 4, [e,i,j,k],sc)
LatexWiki Image(22)
Type: Domain