changed:
-Author: Diego Saa
-
-(Submitted on 20 Nov 2007)
Author: Diego Saa (Submitted on 20 Nov 2007)
removed:
-\begin{axiom}
-all:=[a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]
-a:Vector DMP(all,INT):=[a1,a2,a3,a4]
-b:Vector DMP(all,INT):=[b1,b2,b3,b4]
-c:Vector DMP(all,INT):=[c1,c2,c3,c4]
--- Jordan?
-a ** (b ** c) + c ** (a ** b) + b ** (c ** a)
-a0:Vector DMP(all,INT):=[0,a2,a3,a4]
-b0:Vector DMP(all,INT):=[0,b2,b3,b4]
-c0:Vector DMP(all,INT):=[0,c2,c3,c4]
--- Jordan?
-a0 ** (b0 ** c0) + c0 ** (a0 ** b0) + b0 ** (c0 ** a0)
-(a0 ** b0) ** c0 + (c0 ** a0) ** b0 + (b0 ** c0) ** a0
-\end{axiom}
-
added:
)clear all
added:
The algebra above can be given by structural constants.
\begin{axiom}
sc:Vector Matrix Fraction Integer := [ _
[[ 1, 0, 0, 0], _
[ 0, 1, 0, 0], _
[ 0, 0, 1, 0], _
[ 0, 0, 0, 1]], _
[[ 0, 1, 0, 0], _
[-1, 0, 0, 0], _
[ 0, 0, 0, 1], _
[ 0, 0,-1, 0]], _
[[ 0, 0, 1, 0], _
[ 0, 0, 0,-1], _
[-1, 0, 0, 0], _
[ 0, 1, 0, 0]], _
[[ 0, 0, 0, 1], _
[ 0, 0, 1, 0], _
[ 0,-1, 0, 0], _
[-1, 0, 0, 0]]]
V:=AlgebraGivenByStructuralConstants(Fraction Integer, 4, [e,i,j,k],sc)
\end{axiom}
Ref: http://arxiv.org/abs/0711.3220
Fourvector algebra
Author: Diego Saa (Submitted on 20 Nov 2007)
Abstract: The algebra of fourvectors is described. The fourvectors are more appropriate than the Hamilton quaternions for its use in Physics and the sciences in general. The fourvectors embrace the 3D vectors in a natural form. It is shown the excellent ability to perform rotations with the use of fourvectors, as well as their use in relativity for producing Lorentz boosts, which are understood as simple rotations.
axiom
_*_*(x,y)==concat(x(1) * y(1) + dot(x(2..), y(2..)), x(1) * y(2..) - x(2..) * y(1) + cross(x(2..), y(2..)))
Type: Void
axiom
e:Vector INT:=[1,0,0,0]
Type: Vector Integer
axiom
i:Vector INT:=[0,1,0,0]
Type: Vector Integer
axiom
j:Vector INT:=[0,0,1,0]
Type: Vector Integer
axiom
k:Vector INT:=[0,0,0,1]
Type: Vector Integer
axiom
Compiling function ** with type (Vector Integer,Vector Integer) ->
Vector Integer
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Type: Boolean
Axiom has a domain for NonAssociative? Algebra
This is documented in the article:
Computations in Algebras of Fixed Rank by Johannes Grabmeir and Robert Wisbauer, from the book "Computational Algebra"
By Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro.
axiom
)clear all
All user variables and function definitions have been cleared.
)show NonAssociativeAlgebra
NonAssociativeAlgebra R: CommutativeRing is a category constructor
Abbreviation for NonAssociativeAlgebra is NAALG
This constructor is exposed in this frame.
Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-linux/../../src/algebra/NAALG.spad to see algebra source code for NAALG
------------------------------- Operations --------------------------------
?*? : (R,%) -> % ?*? : (%,R) -> %
?*? : (%,%) -> % ?*? : (Integer,%) -> %
?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) -> %
?+? : (%,%) -> % ?-? : (%,%) -> %
-? : % -> % ?=? : (%,%) -> Boolean
0 : () -> % antiCommutator : (%,%) -> %
associator : (%,%,%) -> % coerce : % -> OutputForm
commutator : (%,%) -> % hash : % -> SingleInteger
latex : % -> String sample : () -> %
zero? : % -> Boolean ?~=? : (%,%) -> Boolean
?*? : (NonNegativeInteger,%) -> %
leftPower : (%,PositiveInteger) -> %
plenaryPower : (%,PositiveInteger) -> %
rightPower : (%,PositiveInteger) -> %
subtractIfCan : (%,%) -> Union(%,"failed")
The algebra above can be given by structural constants.
axiom
sc:Vector Matrix Fraction Integer := [ _
[[ 1, 0, 0, 0], _
[ 0, 1, 0, 0], _
[ 0, 0, 1, 0], _
[ 0, 0, 0, 1]], _
[[ 0, 1, 0, 0], _
[-1, 0, 0, 0], _
[ 0, 0, 0, 1], _
[ 0, 0,-1, 0]], _
[[ 0, 0, 1, 0], _
[ 0, 0, 0,-1], _
[-1, 0, 0, 0], _
[ 0, 1, 0, 0]], _
[[ 0, 0, 0, 1], _
[ 0, 0, 1, 0], _
[ 0,-1, 0, 0], _
[-1, 0, 0, 0]]]
Type: Vector Matrix Fraction Integer
axiom
V:=AlgebraGivenByStructuralConstants(Fraction Integer, 4, [e,i,j,k],sc)
Type: Domain