login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxNonAssociativeAlgebra revision 8 of 25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Editor: Bill Page
Time: 2008/04/24 09:49:13 GMT-7
Note: Jordan

added:

This is documented in the article: 
"Computations in Algebras of Fixed Rank":http://books.google.ca/books?id=_J8Iw2x8iuUC&pg=PA131&lpg=PA131&dq=%22Computations+in+Algebras+of+Finite+Rank%22&source=web&ots=v5oRt7zRiE&sig=1-fc49wDVfzrX9DAE10LT4MRS0U&hl=en by Johannes Grabmeir and Robert Wisbauer, from the book "Computational Algebra"
 By Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro.


Ref: http://arxiv.org/abs/0711.3220

Fourvector algebra

Author: Diego Saa

(Submitted on 20 Nov 2007)

Abstract: The algebra of fourvectors is described. The fourvectors are more appropriate than the Hamilton quaternions for its use in Physics and the sciences in general. The fourvectors embrace the 3D vectors in a natural form. It is shown the excellent ability to perform rotations with the use of fourvectors, as well as their use in relativity for producing Lorentz boosts, which are understood as simple rotations.

axiom
_*_*(x,y)==concat(x(1) * y(1) + dot(x(2..), y(2..)), x(1) * y(2..) - x(2..) * y(1) + cross(x(2..), y(2..)))
Type: Void
axiom
e:Vector INT:=[1,0,0,0]
LatexWiki Image(1)
Type: Vector Integer
axiom
i:Vector INT:=[0,1,0,0]
LatexWiki Image(2)
Type: Vector Integer
axiom
j:Vector INT:=[0,0,1,0]
LatexWiki Image(3)
Type: Vector Integer
axiom
k:Vector INT:=[0,0,0,1]
LatexWiki Image(4)
Type: Vector Integer
axiom
test(e**e=e)
axiom
Compiling function ** with type (Vector Integer,Vector Integer) -> 
      Vector Integer
LatexWiki Image(5)
Type: Boolean
axiom
test(i**i=e)
LatexWiki Image(6)
Type: Boolean
axiom
test(j**j=e)
LatexWiki Image(7)
Type: Boolean
axiom
test(k**k=e)
LatexWiki Image(8)
Type: Boolean
axiom
test(e**i=i)
LatexWiki Image(9)
Type: Boolean
axiom
test(e**j=j)
LatexWiki Image(10)
Type: Boolean
axiom
test(e**k=k)
LatexWiki Image(11)
Type: Boolean
axiom
test(i**e=-i)
LatexWiki Image(12)
Type: Boolean
axiom
test(j**e=-j)
LatexWiki Image(13)
Type: Boolean
axiom
test(k**e=-k)
LatexWiki Image(14)
Type: Boolean
axiom
test(i**j=k)
LatexWiki Image(15)
Type: Boolean
axiom
test(j**i=-k)
LatexWiki Image(16)
Type: Boolean
axiom
test(k**i=j)
LatexWiki Image(17)
Type: Boolean
axiom
test(i**k=-j)
LatexWiki Image(18)
Type: Boolean
axiom
test(j**k=i)
LatexWiki Image(19)
Type: Boolean
axiom
test(k**j=-i)
LatexWiki Image(20)
Type: Boolean

axiom
all:=[a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]
LatexWiki Image(21)
Type: List OrderedVariableList? [a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?
axiom
a:Vector DMP(all,INT):=[a1,a2,a3,a4]
LatexWiki Image(22)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
b:Vector DMP(all,INT):=[b1,b2,b3,b4]
LatexWiki Image(23)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
c:Vector DMP(all,INT):=[c1,c2,c3,c4]
LatexWiki Image(24)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
-- Jordan? a ** (b ** c) + c ** (a ** b) + b ** (c ** a)
axiom
Compiling function ** with type (Vector 
      DistributedMultivariatePolynomial([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,
      c3,c4],Integer),Vector DistributedMultivariatePolynomial([a1,a2,
      a3,a4,b1,b2,b3,b4,c1,c2,c3,c4],Integer)) -> Vector 
      DistributedMultivariatePolynomial([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,
      c3,c4],Integer)
LatexWiki Image(25)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
a0:Vector DMP(all,INT):=[0,a2,a3,a4]
LatexWiki Image(26)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
b0:Vector DMP(all,INT):=[0,b2,b3,b4]
LatexWiki Image(27)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
c0:Vector DMP(all,INT):=[0,c2,c3,c4]
LatexWiki Image(28)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
-- Jordan? a0 ** (b0 ** c0) + c0 ** (a0 ** b0) + b0 ** (c0 ** a0)
LatexWiki Image(29)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)
axiom
(a0 ** b0) ** c0 + (c0 ** a0) ** b0 + (b0 ** c0) ** a0
LatexWiki Image(30)
Type: Vector DistributedMultivariatePolynomial?([a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4]?,Integer)

Axiom has a domain for NonAssociative? Algebra

This is documented in the article: Computations in Algebras of Fixed Rank by Johannes Grabmeir and Robert Wisbauer, from the book "Computational Algebra" By Klaus G. Fischer, Philippe Loustaunau, Jay Shapiro.

axiom
)show NonAssociativeAlgebra NonAssociativeAlgebra R: CommutativeRing is a category constructor Abbreviation for NonAssociativeAlgebra is NAALG This constructor is exposed in this frame. Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-linux/../../src/algebra/NAALG.spad to see algebra source code for NAALG ------------------------------- Operations -------------------------------- ?*? : (R,%) -> % ?*? : (%,R) -> % ?*? : (%,%) -> % ?*? : (Integer,%) -> % ?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) -> % ?+? : (%,%) -> % ?-? : (%,%) -> % -? : % -> % ?=? : (%,%) -> Boolean 0 : () -> % antiCommutator : (%,%) -> % associator : (%,%,%) -> % coerce : % -> OutputForm commutator : (%,%) -> % hash : % -> SingleInteger latex : % -> String sample : () -> % zero? : % -> Boolean ?~=? : (%,%) -> Boolean ?*? : (NonNegativeInteger,%) -> % leftPower : (%,PositiveInteger) -> % plenaryPower : (%,PositiveInteger) -> % rightPower : (%,PositiveInteger) -> % subtractIfCan : (%,%) -> Union(%,"failed")