Symbolic Matrices
axiom
A:=matrix [[x,y],[z,w]]
Type: Matrix(Polynomial(Integer))
axiom
A+1
Type: SquareMatrix(2,Polynomial(Integer))
axiom
A+2
Type: SquareMatrix(2,Polynomial(Integer))
Use the Edit and Preview Functions
Hey, why not learn to use the edit
function
instead of entering such a large number of similar
comments?
Look at the top right hand side of the page.
axiom
N:=matrix[[0],[0]]
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List(List(Expression(Integer)))
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]
Type: Matrix(Polynomial(Integer))
axiom
C:=A*v-L(1,1)*v
Type: Matrix(Expression(Integer))
axiom
solve(C(1,1)=0,v11)
Type: List(Equation(Expression(Integer)))
axiom
solve(C(2,1)=0,v12)
Type: List(Equation(Expression(Integer)))
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix(AlgebraicNumber)
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix(AlgebraicNumber)
axiom
W:=(V(1,1)*V(2,2) - V(1,2)*V(2,1))
axiom
N:=matrix[[0],[0]]
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List(List(Expression(Integer)))
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]
Type: Matrix(Polynomial(Integer))
axiom
C:=A*v-L(1,1)*v
Type: Matrix(Expression(Integer))
axiom
solve(C(1,1)=0,v11)
Type: List(Equation(Expression(Integer)))
axiom
solve(C(2,1)=0,v12)
Type: List(Equation(Expression(Integer)))
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix(AlgebraicNumber)
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix(AlgebraicNumber)
axiom
V(1,1)*V(2,2)
axiom
V(1,2)*V(2,1)
axiom
N:=matrix[[0],[0]]
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List(List(Expression(Integer)))
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]
Type: Matrix(Polynomial(Integer))
axiom
C:=A*v-L(1,1)*v
Type: Matrix(Expression(Integer))
axiom
solve(C(1,1)=0,v11)
Type: List(Equation(Expression(Integer)))
axiom
solve(C(2,1)=0,v12)
Type: List(Equation(Expression(Integer)))
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix(AlgebraicNumber)
axiom
a:=sqrt(T(1,1)^2+T(2,1)^2)
axiom
b=sqrt(T(1,2)^2+T(2,2)^2)
Type: Equation(Polynomial(AlgebraicNumber))
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix(AlgebraicNumber)
axiom
V(1,1)*V(2,2)
axiom
V(1,2)*V(2,1)
axiom
N:=matrix[[0],[0]]
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List(List(Expression(Integer)))
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]
Type: Matrix(Polynomial(Integer))
axiom
C:=A*v-L(1,1)*v
Type: Matrix(Expression(Integer))
axiom
solve(C(1,1)=0,v11)
Type: List(Equation(Expression(Integer)))
axiom
solve(C(2,1)=0,v12)
Type: List(Equation(Expression(Integer)))
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix(AlgebraicNumber)
axiom
sqrt(T(1,1)^2+T(2,1)^2)
axiom
sqrt(T(1,2)^2+T(2,2)^2)
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix(AlgebraicNumber)
axiom
V(1,1)*V(2,2)
axiom
V(1,2)*V(2,1)
axiom
)clear all
All user variables and function definitions have been cleared.
B := %i*sqrt(a^2 + b^2 + c^2)
Type: Expression(Complex(Integer))
axiom
A := matrix[ [B, c, -b], [-c, B, a], [b, -a, B] ]
Type: Matrix(Expression(Complex(Integer)))
axiom
rowEchelon(A)
Type: Matrix(Expression(Complex(Integer)))
axiom
B := -%i*sqrt(a^2 + b^2 + c^2)
Type: Expression(Complex(Integer))
axiom
A := matrix[ [B, c, -b], [-c, B, a], [b, -a, B] ]
Type: Matrix(Expression(Complex(Integer)))
axiom
rowEchelon(A)
Type: Matrix(Expression(Complex(Integer)))