login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox Matrix revision 2 of 6

1 2 3 4 5 6
Editor: page
Time: 2007/11/18 18:34:27 GMT-8
Note: cleanup

removed:
-From unknown Wed Oct 26 13:10:47 -0500 2005
-From: unknown
-Date: Wed, 26 Oct 2005 13:10:47 -0500
-Subject: 
-Message-ID: <20051026131047-0500@wiki.axiom-developer.org>
-
-\begin{axiom}
-inverse([[1,2], [3,4]])
-\end{axiom}
-
-
-
-From unknown Fri Nov 11 10:34:24 -0600 2005
-From: unknown
-Date: Fri, 11 Nov 2005 10:34:24 -0600
-Subject: 
-Message-ID: <20051111103424-0600@www.axiom-developer.org>
-
-\begin{axiom}
-A:=matrix[[1,1,0],[1,0,0],[0,0,1],[0,1,1],[1,1,1]]
-\end{axiom}
-
-
-From unknown Fri Nov 11 10:36:09 -0600 2005
-From: unknown
-Date: Fri, 11 Nov 2005 10:36:09 -0600
-Subject: 
-Message-ID: <20051111103609-0600@www.axiom-developer.org>
-
-\begin{axiom}
-v:=matrix[[2],[1],[0],[1],[2]]
-\end{axiom}
-
-
-From isssso Wed Oct 4 07:29:36 -0500 2006
-From: isssso
-Date: Wed, 04 Oct 2006 07:29:36 -0500
-Subject: msm_test:=matrix[[a,b,c],[b,d,e],[c,e,f]]
-Message-ID: <20061004072936-0500@wiki.axiom-developer.org>
-
-
-
-From isssso Wed Oct 4 07:56:29 -0500 2006
-From: isssso
-Date: Wed, 04 Oct 2006 07:56:29 -0500
-Subject: my matrix test
-Message-ID: <20061004075629-0500@wiki.axiom-developer.org>
-
-\begin{axiom}
-msm_test2:=matrix[[a,b,c,d,e],[b,f,g,h,i],[c,g,j,k,l],[d,h,k,m,n],[e,i,l,n,o]]
-det:=determinant(msm_test2)
-inv:=inverse(m)
-\end{axiom}
-
-From isssso Wed Oct 4 07:56:37 -0500 2006
-From: isssso
-Date: Wed, 04 Oct 2006 07:56:37 -0500
-Subject: my matrix test
-Message-ID: <20061004075637-0500@wiki.axiom-developer.org>
-
-\begin{axiom}
-msm_test2:=matrix[[a,b,c,d,e],[b,f,g,h,i],[c,g,j,k,l],[d,h,k,m,n],[e,i,l,n,o]]
-det:=determinant(msm_test2)
-inv:=inverse(msm_test2)
-\end{axiom}

Symbolic Matrices

axiom
A:=matrix [[x,y],[z,w]]
LatexWiki Image(1)
Type: Matrix Polynomial Integer
axiom
A+1
LatexWiki Image(2)
Type: SquareMatrix?(2,Polynomial Integer)

axiom
A+2
LatexWiki Image(3)
Type: SquareMatrix?(2,Polynomial Integer)


Use the Edit and Preview Functions

Hey, why not learn to use the edit function instead of entering such a large number of similar comments?

Look at the top right hand side of the page.


axiom
N:=matrix[[0],[0]]
LatexWiki Image(4)
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(5)
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(6)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(7)
Type: Matrix Polynomial Integer
axiom
C:=A*v-L(1,1)*v
LatexWiki Image(8)
Type: Matrix Expression Integer
axiom
solve(C(1,1)=0,v11)
LatexWiki Image(9)
Type: List Equation Expression Integer
axiom
solve(C(2,1)=0,v12)
LatexWiki Image(10)
Type: List Equation Expression Integer
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
LatexWiki Image(11)
Type: Matrix AlgebraicNumber?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
LatexWiki Image(12)
Type: Matrix AlgebraicNumber?
axiom
W:=(V(1,1)*V(2,2) - V(1,2)*V(2,1))
LatexWiki Image(13)
Type: AlgebraicNumber?

axiom
N:=matrix[[0],[0]]
LatexWiki Image(14)
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(15)
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(16)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(17)
Type: Matrix Polynomial Integer
axiom
C:=A*v-L(1,1)*v
LatexWiki Image(18)
Type: Matrix Expression Integer
axiom
solve(C(1,1)=0,v11)
LatexWiki Image(19)
Type: List Equation Expression Integer
axiom
solve(C(2,1)=0,v12)
LatexWiki Image(20)
Type: List Equation Expression Integer
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
LatexWiki Image(21)
Type: Matrix AlgebraicNumber?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
LatexWiki Image(22)
Type: Matrix AlgebraicNumber?
axiom
V(1,1)*V(2,2)
LatexWiki Image(23)
Type: AlgebraicNumber?
axiom
V(1,2)*V(2,1)
LatexWiki Image(24)
Type: AlgebraicNumber?

axiom
N:=matrix[[0],[0]]
LatexWiki Image(25)
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(26)
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(27)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(28)
Type: Matrix Polynomial Integer
axiom
C:=A*v-L(1,1)*v
LatexWiki Image(29)
Type: Matrix Expression Integer
axiom
solve(C(1,1)=0,v11)
LatexWiki Image(30)
Type: List Equation Expression Integer
axiom
solve(C(2,1)=0,v12)
LatexWiki Image(31)
Type: List Equation Expression Integer
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
LatexWiki Image(32)
Type: Matrix AlgebraicNumber?
axiom
a:=sqrt(T(1,1)^2+T(2,1)^2)
LatexWiki Image(33)
Type: AlgebraicNumber?
axiom
b=sqrt(T(1,2)^2+T(2,2)^2)
LatexWiki Image(34)
Type: Equation Polynomial AlgebraicNumber?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
LatexWiki Image(35)
Type: Matrix AlgebraicNumber?
axiom
V(1,1)*V(2,2)
LatexWiki Image(36)
Type: AlgebraicNumber?
axiom
V(1,2)*V(2,1)
LatexWiki Image(37)
Type: AlgebraicNumber?

axiom
N:=matrix[[0],[0]]
LatexWiki Image(38)
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(39)
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(40)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(41)
Type: Matrix Polynomial Integer
axiom
C:=A*v-L(1,1)*v
LatexWiki Image(42)
Type: Matrix Expression Integer
axiom
solve(C(1,1)=0,v11)
LatexWiki Image(43)
Type: List Equation Expression Integer
axiom
solve(C(2,1)=0,v12)
LatexWiki Image(44)
Type: List Equation Expression Integer
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
LatexWiki Image(45)
Type: Matrix AlgebraicNumber?
axiom
sqrt(T(1,1)^2+T(2,1)^2)
LatexWiki Image(46)
Type: AlgebraicNumber?
axiom
sqrt(T(1,2)^2+T(2,2)^2)
LatexWiki Image(47)
Type: AlgebraicNumber?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
LatexWiki Image(48)
Type: Matrix AlgebraicNumber?
axiom
V(1,1)*V(2,2)
LatexWiki Image(49)
Type: AlgebraicNumber?
axiom
V(1,2)*V(2,1)
LatexWiki Image(50)
Type: AlgebraicNumber?