Symbolic Matrices
axiom
A:=matrix [[x,y],[z,w]]
Type: Matrix Polynomial Integer
Type: SquareMatrix
?(2,Polynomial Integer)
Type: SquareMatrix
?(2,Polynomial Integer)
Use the Edit and Preview Functions
Hey, why not learn to use the edit
function
instead of entering such a large number of similar
comments?
Look at the top right hand side of the page.
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
Type: Matrix Polynomial Integer
Type: Matrix Expression Integer
Type: List Equation Expression Integer
Type: List Equation Expression Integer
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix AlgebraicNumber
?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix AlgebraicNumber
?
axiom
W:=(V(1,1)*V(2,2) - V(1,2)*V(2,1))
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
Type: Matrix Polynomial Integer
Type: Matrix Expression Integer
Type: List Equation Expression Integer
Type: List Equation Expression Integer
axiom
V:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix AlgebraicNumber
?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix AlgebraicNumber
?
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
Type: Matrix Polynomial Integer
Type: Matrix Expression Integer
Type: List Equation Expression Integer
Type: List Equation Expression Integer
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix AlgebraicNumber
?
axiom
a:=sqrt(T(1,1)^2+T(2,1)^2)
axiom
b=sqrt(T(1,2)^2+T(2,2)^2)
Type: Equation Polynomial AlgebraicNumber
?
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix AlgebraicNumber
?
Type: Matrix Integer
axiom
L:=[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
Type: List List Expression Integer
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
Type: Matrix Polynomial Integer
Type: Matrix Expression Integer
Type: List Equation Expression Integer
Type: List Equation Expression Integer
axiom
T:=matrix[[1/sqrt(-1),1],[1,-1/sqrt(-1)]]
Type: Matrix AlgebraicNumber
?
axiom
sqrt(T(1,1)^2+T(2,1)^2)
axiom
sqrt(T(1,2)^2+T(2,2)^2)
axiom
Z:=matrix[[V(2,2),-V(1,2)],[-V(2,1),V(1,1)]]
Type: Matrix AlgebraicNumber
?