login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxJohn2 revision 3 of 3

1 2 3
Editor: test1
Time: 2019/08/11 18:21:28 GMT+0
Note:

changed:
-  What method is used to solve equation in Axiom?
  What method is used to solve equation in FriCAS?

This is a new SandBox test page. Since the page name begins with SandBox, no email notice should be generated if this page is changed.

Solving Equations

What method is used to solve equation in FriCAS?

off tex;
solve( {st^2 * ( (x2-xa)^2 + (y2-ya)^2 ) = sa^2 * ( (x2-xt)^2 + (y2-yt)^2 ), y2 = 0}, {x2, y2} );
4 2 2 2 2 2 2 2 2 2 {{x2=(sqrt( - sa *yt + sa *st *xa - 2*sa *st *xa*xt + sa *st *xt
2 2 2 2 2 2 4 2 2 2 2 2 + sa *st *ya + sa *st *yt - st *ya ) + sa *xt - st *xa)/(sa - st
),
y2=0},
4 2 2 2 2 2 2 2 2 2 {x2=( - sqrt( - sa *yt + sa *st *xa - 2*sa *st *xa*xt + sa *st *xt
2 2 2 2 2 2 4 2 2 2 2 + sa *st *ya + sa *st *yt - st *ya ) + sa *xt - st *xa)/(sa
2 - st ),
y2=0}}
solve( {st^2 * ( (x2-xa)^2 + (y2-ya)^2 ) = sa^2 * ( (x2-xt)^2 + (y2-yt)^2 ), y2 = m*x2 + b}, {x2, y2} );
2 4 2 2 2 2 4 4 2 2 {{x2=(sqrt( - b *sa + 2*b *sa *st - b *st - 2*b*m*sa *xt + 2*b*m*sa *st *xa
2 2 4 4 2 2 + 2*b*m*sa *st *xt - 2*b*m*st *xa + 2*b*sa *yt - 2*b*sa *st *ya
2 2 4 2 4 2 2 2 2 2 - 2*b*sa *st *yt + 2*b*st *ya - m *sa *xt + m *sa *st *xa
2 2 2 2 2 2 2 2 2 2 2 + m *sa *st *xt + m *sa *st *ya - 2*m *sa *st *ya*yt
2 2 2 2 2 4 2 4 2 2 + m *sa *st *yt - m *st *xa + 2*m*sa *xt*yt - 2*m*sa *st *xa*yt
2 2 4 4 2 2 2 2 - 2*m*sa *st *xt*ya + 2*m*st *xa*ya - sa *yt + sa *st *xa
2 2 2 2 2 2 2 2 2 2 2 - 2*sa *st *xa*xt + sa *st *xt + sa *st *ya + sa *st *yt
4 2 2 2 2 2 2 - st *ya ) - b*m*sa + b*m*st + m*sa *yt - m*st *ya + sa *xt
2 2 2 2 2 2 2 - st *xa)/(m *sa - m *st + sa - st ),
2 4 2 2 2 2 4 4 2 2 y2=(sqrt( - b *sa + 2*b *sa *st - b *st - 2*b*m*sa *xt + 2*b*m*sa *st *xa
2 2 4 4 2 2 + 2*b*m*sa *st *xt - 2*b*m*st *xa + 2*b*sa *yt - 2*b*sa *st *ya
2 2 4 2 4 2 2 2 2 2 - 2*b*sa *st *yt + 2*b*st *ya - m *sa *xt + m *sa *st *xa
2 2 2 2 2 2 2 2 2 2 2 + m *sa *st *xt + m *sa *st *ya - 2*m *sa *st *ya*yt
2 2 2 2 2 4 2 4 2 2 + m *sa *st *yt - m *st *xa + 2*m*sa *xt*yt - 2*m*sa *st *xa*yt
2 2 4 4 2 2 2 2 - 2*m*sa *st *xt*ya + 2*m*st *xa*ya - sa *yt + sa *st *xa
2 2 2 2 2 2 2 2 2 2 2 - 2*sa *st *xa*xt + sa *st *xt + sa *st *ya + sa *st *yt
4 2 2 2 2 2 2 2 2 - st *ya )*m + b*sa - b*st + m *sa *yt - m *st *ya + m*sa *xt
2 2 2 2 2 2 2 - m*st *xa)/(m *sa - m *st + sa - st )},
2 4 2 2 2 2 4 4 {x2=( - sqrt( - b *sa + 2*b *sa *st - b *st - 2*b*m*sa *xt
2 2 2 2 4 4 + 2*b*m*sa *st *xa + 2*b*m*sa *st *xt - 2*b*m*st *xa + 2*b*sa *yt
2 2 2 2 4 2 4 2 - 2*b*sa *st *ya - 2*b*sa *st *yt + 2*b*st *ya - m *sa *xt
2 2 2 2 2 2 2 2 2 2 2 2 + m *sa *st *xa + m *sa *st *xt + m *sa *st *ya
2 2 2 2 2 2 2 2 4 2 - 2*m *sa *st *ya*yt + m *sa *st *yt - m *st *xa
4 2 2 2 2 + 2*m*sa *xt*yt - 2*m*sa *st *xa*yt - 2*m*sa *st *xt*ya
4 4 2 2 2 2 2 2 + 2*m*st *xa*ya - sa *yt + sa *st *xa - 2*sa *st *xa*xt
2 2 2 2 2 2 2 2 2 4 2 2 + sa *st *xt + sa *st *ya + sa *st *yt - st *ya ) - b*m*sa
2 2 2 2 2 2 2 2 2 2 + b*m*st + m*sa *yt - m*st *ya + sa *xt - st *xa)/(m *sa - m *st + sa
2 - st ),
2 4 2 2 2 2 4 4 y2=( - sqrt( - b *sa + 2*b *sa *st - b *st - 2*b*m*sa *xt
2 2 2 2 4 4 + 2*b*m*sa *st *xa + 2*b*m*sa *st *xt - 2*b*m*st *xa + 2*b*sa *yt
2 2 2 2 4 2 4 2 - 2*b*sa *st *ya - 2*b*sa *st *yt + 2*b*st *ya - m *sa *xt
2 2 2 2 2 2 2 2 2 2 2 2 + m *sa *st *xa + m *sa *st *xt + m *sa *st *ya
2 2 2 2 2 2 2 2 4 2 - 2*m *sa *st *ya*yt + m *sa *st *yt - m *st *xa
4 2 2 2 2 + 2*m*sa *xt*yt - 2*m*sa *st *xa*yt - 2*m*sa *st *xt*ya
4 4 2 2 2 2 2 2 + 2*m*st *xa*ya - sa *yt + sa *st *xa - 2*sa *st *xa*xt
2 2 2 2 2 2 2 2 2 4 2 2 + sa *st *xt + sa *st *ya + sa *st *yt - st *ya )*m + b*sa
2 2 2 2 2 2 2 2 2 2 2 - b*st + m *sa *yt - m *st *ya + m*sa *xt - m*st *xa)/(m *sa - m *st
2 2 + sa - st )}}
reduce

fricas
(1) -> )set output tex off
 
fricas
)set output algebra on
solve( y = 3 * x + 7, x )
y - 7 (1) [x = -----] 3
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
solve( [st * ( (x2-xa)^2 + (y2-ya)^2 ) = 0, x2 = 1], [x2, y2] )
2 2 2 (2) [[x2 = 1, ya - 2 y2 ya + y2 + xa - 2 xa + 1 = 0]]
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
fricas
solve( [st^2 * ( (x2-xa)^2 + (y2-ya)^2 ) = sa^2 * ( (x2-xt)^2 + (y2-yt)^2 ), y2 = m*x2 + b], [x2, y2] )
(3) [ y2 - b [x2 = ------, m
2 2 2 2 2 2 2 2 2 2 - m sa yt + 2 m sa y2 yt + m st ya - 2 m st y2 ya + 2 2 2 2 2 ((m + 1)st + (- m - 1)sa )y2 + 2 2 2 2 2 2 2 (2 m sa xt - 2 m st xa - 2 b st + 2 b sa )y2 - m sa xt + 2 2 2 2 2 2 2 2 2 - 2 b m sa xt + m st xa + 2 b m st xa + b st - b sa = 0 ] ]
Type: List(List(Equation(Fraction(Polynomial(Integer)))))

fricas
solve( [st^2 * ( (x2-xa)^2 + (y2-ya)^2 ) = sa^2 * ( (x2-xt)^2 + (y2-yt)^2 ), x2 = y2], [x2, y2] )
(4) [ [x2 = y2,
2 2 2 2 2 2 2 2 2 - sa yt + 2 sa y2 yt + st ya - 2 st y2 ya + (2 st - 2 sa )y2 + 2 2 2 2 2 2 (2 sa xt - 2 st xa)y2 - sa xt + st xa = 0 ] ]
Type: List(List(Equation(Fraction(Polynomial(Integer)))))
fricas
solve( st * ( (x2-xa)^2 + (y2-ya)^2 )^(1/2) = 0,st)
(5) [st = 0]
Type: List(Equation(Expression(Integer)))
fricas
solve([a=4,sin(x)=a/5],[a,x])
(6) []
Type: List(List(Equation(Expression(Integer))))