login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

A complex vector ℂ-space V possesses many different hermitian isomorphisms h^\dagger=h \in iso(V,V^\dagger). In quantum mechanics a given operator \rho \in End(V) may be said to be h-hermitian if


\rho^\dagger \circ h = h \circ \rho
 
fricas
(1) -> ℂ:=Complex Fraction Polynomial Integer

\label{eq1}\hbox{\axiomType{Complex}\ } \left({\hbox{\axiomType{Fraction}\ } \left({\hbox{\axiomType{Polynomial}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}\right)}\right)(1)
Type: Type
fricas
-- dagger
htranspose(h)==map(x+->conjugate(x),transpose h)
Type: Void
fricas
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial

Theorem

The necessary conditions for an operator ρ to possess hermitean isomorphism h is that trace ρ \in ℝ and det ρ \in ℝ.

Two-Dimensions

fricas
p:ℂ:=complex(ℜp,𝔍p)

\label{eq2}\begin{array}{@{}l}
\displaystyle
� � p +{
\begin{array}{@{}l}
\displaystyle
�� � p \  \cdot 
\
\
\displaystyle
i 
(2)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
q:ℂ:=complex(ℜq,𝔍q)

\label{eq3}\begin{array}{@{}l}
\displaystyle
� � q +{
\begin{array}{@{}l}
\displaystyle
�� � q \  \cdot 
\
\
\displaystyle
i 
(3)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
r:ℂ:=complex(ℜr,𝔍r)

\label{eq4}\begin{array}{@{}l}
\displaystyle
� � r +{
\begin{array}{@{}l}
\displaystyle
�� � r \  \cdot 
\
\
\displaystyle
i 
(4)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
t:ℂ:=complex(ℜt,0)

\label{eq5}� � t(5)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
ρ:Matrix ℂ := matrix [[t/2+p,q],[r,t/2-p]]

\label{eq6}\left[ 
\begin{array}{cc}
{{\frac{� � t +{2 \  � � p}}{2}}+{�� � p \  i}}&{� � q +{�� � q \  i}}
\
{� � r +{�� � r \  i}}&{{\frac{� � t -{2 \  � � p}}{2}}-{�� � p \  i}}
(6)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
fricas
trace ρ

\label{eq7}� � t(7)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
d:=determinant ρ

\label{eq8}\begin{array}{@{}l}
\displaystyle
{\frac{{4 \  �� � q \  �� � r}+{4 \ {{�� � p}^{2}}}+{{� � t}^{2}}-{4 \  � � q \  � � r}-{4 \ {{� � p}^{2}}}}{4}}+ 
\
\
\displaystyle
{{\left({
\begin{array}{@{}l}
\displaystyle
-{
\begin{array}{@{}l}
\displaystyle
� � q \  \cdot 
\
\
\displaystyle
�� � r 
(8)
Type: Complex(Fraction(Polynomial(Integer)))
fricas
test(p^2+r*q=(1/4)*t^2-d)

\label{eq9} \mbox{\rm true} (9)
Type: Boolean
fricas
s0:=solve(imag d,ℜr)

\label{eq10}\left[ � � r ={\frac{-{� � q \  �� � r}-{2 \  � � p \  �� � p}}{�� � q}}\right](10)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
eval(trace(ρ*ρ),s0)

\label{eq11}\frac{{{\left(-{4 \ {{�� � q}^{2}}}-{4 \ {{� � q}^{2}}}\right)}\  �� � r}+{{\left(-{4 \ {{�� � p}^{2}}}+{{� � t}^{2}}+{4 \ {{� � p}^{2}}}\right)}\  �� � q}-{8 \  � � p \  � � q \  �� � p}}{2 \  �� � q}(11)
Type: Fraction(Polynomial(Complex(Integer)))

Given an operator ρ \in End V, one must find the tensor H=0 for unknown manifold of hermitian isomorphisms h.

fricas
h:Matrix ℂ:=matrix [[a,complex(b,c)],[complex(b,-c),e]]

\label{eq12}\left[ 
\begin{array}{cc}
a &{b +{c \  i}}
\
{b -{c \  i}}& e 
(12)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))
fricas
test(h = htranspose h)
fricas
Compiling function htranspose with type Matrix(Complex(Fraction(
      Polynomial(Integer)))) -> Matrix(Complex(Fraction(Polynomial(
      Integer))))

\label{eq13} \mbox{\rm true} (13)
Type: Boolean
fricas
H:=htranspose(ρ)*h-h*ρ

\label{eq14}\left[ 
\begin{array}{cc}
{{\left(-{2 \  b \  �� � r}-{2 \  a \  �� � p}-{2 \  c \  � � r}\right)}\  i}&{{e \  � � r}-{a \  � � q}+{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}
\
{-{e \  � � r}+{a \  � � q}-{2 \  b \  � � p}+{{\left(-{e \  �� � r}-{a \  �� � q}+{2 \  c \  � � p}\right)}\  i}}&{{\left(-{2 \  b \  �� � q}+{2 \  e \  �� � p}+{2 \  c \  � � q}\right)}\  i}
(14)
Type: Matrix(Complex(Fraction(Polynomial(Integer))))

We wish to find expressions for h in terms of the components of ρ. To do this we will determine how the components of H depend on the components of h.

fricas
J:=jacobian(concat( map(x+->[real x, imag x], concat(H::List List ?)) ),
     [a,b,c,e]::List Symbol)

\label{eq15}\left[ 
\begin{array}{cccc}
0 & 0 & 0 & 0 
\
-{2 \  �� � p}& -{2 \  �� � r}& -{2 \  � � r}& 0 
\
- � � q &{2 \  � � p}& 0 & � � r 
\
- �� � q & 0 &{2 \  � � p}& - �� � r 
\
� � q & -{2 \  � � p}& 0 & - � � r 
\
- �� � q & 0 &{2 \  � � p}& - �� � r 
\
0 & 0 & 0 & 0 
\
0 & -{2 \  �� � q}&{2 \  � � q}&{2 \  �� � p}
(15)
Type: Matrix(Fraction(Polynomial(Integer)))

The null space (kernel) of the Jacobian

fricas
N:=nullSpace(map(x+->eval(x,s0),J))

\label{eq16}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
\left[{\frac{2 \  � � p}{�� � q}}, \right.
\
\
\displaystyle
\left.\: \right.
\
\
\displaystyle
\left.{\frac{� � q}{�� � q}}, \right.
\
\
\displaystyle
\left.\: 1, \: 0 \right] 
(16)
Type: List(Vector(Fraction(Polynomial(Integer))))

gives the general solution to the problem.

fricas
s1:=map((x,y)+->x=y,[a,b,c,e],c*N.1+e*N.2)

\label{eq17}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
a = 
\
\
\displaystyle
{\frac{-{e \  �� � r}+{2 \  c \  � � p}}{�� � q}}
(17)
Type: List(Equation(Fraction(Polynomial(Integer))))
fricas
map(x+->eval(x,concat(s0,s1)),H)

\label{eq18}\left[ 
\begin{array}{cc}
0 & 0 
\
0 & 0 
(18)
Type: Matrix(Fraction(Polynomial(Complex(Integer))))

SandBoxHermitianIsomorphisms3




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: