This page makes test uses of the guessing package by Martin Rubey. Feel
free to add new sequences or change the sequences to ones you like to try.
See GuessingFormulasForSequences? for some explanations.
axiom
guess([1, 4, 11, 35, 98, 294, 832, 2401, 6774, 19137, 53466, 148994, 412233], [guessRat],
[guessSum, guessProduct], maxLevel==2)
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
The answer being an empty list tells us, that there is no
rational function of total degree less than 13, that generates
these numbers. Furthermore, for being such a rational
function, there is no formula of the form or
, nor ,
nor replacing the products by sums. In fact, if you look at
Sloane's encyclopedia, you will find a good reason for that: I'd
by very surprised to find such a simple formula for such a family
of objects...
axiom
guessExpRat [(1+x)^x for x in 0..3]
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
A workaround is necessary, because of bug #128
axiom
l := [1, 1, 1+q, 1+q+q^2, 1+q+q^2+q^3+q^4, 1+q+q^2+q^3+2*q^4+q^5+q^6,
1+q+q^2+q^3+2*q^4+2*q^5+2*q^6+q^7+q^8+q^9,
(1+q^4+q^6)*(1+q+q^2+q^3+q^4+q^5+q^6),
(1+q^4)*(1+q+q^2+q^3+q^4+q^5+2*q^6+2*q^7+2*q^8+2*q^9+q^10+q^11+q^12)]
Type: List Polynomial Integer
axiom
guessPRec(q)(l, []).1
Type: Record(function: Expression Integer,order: NonNegativeInteger
?)
Here are some that are tried:
axiom
listA := [1,1,2,5,14,42,132];
Type: List PositiveInteger
?
axiom
listB := [1,2,6,21,80, 322];
Type: List PositiveInteger
?
axiom
listC := [1,1,2,7,42,429,7436,218348];
Type: List PositiveInteger
?
axiom
guess(listA, [guessRat], [guessSum, guessProduct])
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
guess(listB, [guessRat], [guessSum, guessProduct])
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
guess(listC, [guessRat], [guessProduct]).1
Type: Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
listD := [1,1,2,6,26,162,1450,18626];
Type: List PositiveInteger
?
axiom
listE := [1,1,2,6,28,202,2252];
Type: List PositiveInteger
?
axiom
guess(listD, [guessRat], [guessProduct]).1
>> Error detected within library code:
index out of range
axiom
li := [-86, -975, -100, -1728, -31213];
Type: List Integer
axiom
guess(li, [guessRat], [guessSum, guessProduct])
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
"Most" sequences arising in combinatorics are P-recursive:
axiom
guessPRec([1,1,6,54,660,10260,194040,4326840,111177360,3234848400,105135861600]).1.function
Type: Expression Integer
axiom
guess([1,1,2,7,40,355,4720,91690,2559980,101724390], [guessRat], [guessSum, guessProduct],
maxLevel==2)
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
guess([1, 2, 3, 7, 11, 16, 26, 36, 56, 81, 131, 183, 287, 417, 677], [guessRat], [guessSum,
guessProduct], maxLevel==2)
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
guess([1,1,2,7,40,355,4720,91690,2559980,101724390,5724370860,455400049575], [guessRat],
[guessSum, guessProduct], maxLevel==2)
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
axiom
guess([1,1,4,35,545,13520,499215,26269200,1917388310,191268774585], [guessRat], [guessSum,
guessProduct], maxLevel==2)
Type: List Record(function: Expression Integer,order: NonNegativeInteger
?)
guess([-1/3,-11/25,-23/49,-13/27,-59/121,-83/169]
?, [guessRat]
?, [guessSum,
guessProduct], maxLevel==2)