login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxFSpace revision 4 of 5

1 2 3 4 5
Editor: Bill Page
Time: 2015/03/06 21:45:11 GMT+0
Note:

added:
\begin{axiom}
)lib FSPECF
\end{axiom}


Add conjugate

fricas
)lib FSPECF
FunctionalSpecialFunction is now explicitly exposed in frame initial
FunctionalSpecialFunction will be automatically loaded when needed from /var/aw/var/LatexWiki/FSPECF.NRLIB/FSPECF

spad
)abbrev category ES ExpressionSpace
++ Category for domains on which operators can be applied
++ Author: Manuel Bronstein
++ Date Created: 22 March 1988
++ Date Last Updated: 27 May 1994
++ Description:
++ An expression space is a set which is closed under certain operators;
++ Keywords: operator, kernel, expression, space.
ExpressionSpace() : Category == Defn where
  N   ==> NonNegativeInteger
  K   ==> Kernel %
  OP  ==> BasicOperator
  SY  ==> Symbol
  PAREN  ==> '%paren
  BOX    ==> '%box
Defn ==> Join(Comparable, RetractableTo K, InnerEvalable(K, %), Evalable %) with elt : (OP, %) -> % ++ elt(op, x) or op(x) applies the unary operator op to x. elt : (OP, %, %) -> % ++ elt(op, x, y) or op(x, y) applies the binary operator op to x and y. elt : (OP, %, %, %) -> % ++ elt(op, x, y, z) or op(x, y, z) applies the ternary operator op to x, y and z. elt : (OP, %, %, %, %) -> % ++ elt(op, x, y, z, t) or op(x, y, z, t) applies the 4-ary operator op to x, y, z and t. elt : (OP, %, %, %, %, %) -> % ++ elt(op, x, y, z, t, s) applies the 5-ary operator op to ++ x, y, z, t and s elt : (OP, %, %, %, %, %, %) -> % ++ elt(op, x, y, z, t, s, r) applies the 6-ary operator op to ++ x, y, z, t, s and r elt : (OP, %, %, %, %, %, %, %) -> % ++ elt(op, x, y, z, t, s, r, q) applies the 7-ary operator op to ++ x, y, z, t, s, r and q elt : (OP, %, %, %, %, %, %, %, %) -> % ++ elt(op, x, y, z, t, s, r, q, p) applies the 8-ary operator op ++ to x, y, z, t, s, r, q and p elt : (OP, %, %, %, %, %, %, %, %, %) -> % ++ elt(op, x, y, z, t, s, r, q, p, o) applies the 9-ary operator op ++ to x, y, z, t, s, r, q, p and o elt : (OP, List %) -> % ++ elt(op, [x1, ..., xn]) or op([x1, ..., xn]) applies the n-ary operator op to x1, ..., xn. subst : (%, Equation %) -> % ++ subst(f, k = g) replaces the kernel k by g formally in f. subst : (%, List Equation %) -> % ++ subst(f, [k1 = g1, ..., kn = gn]) replaces the kernels k1, ..., kn ++ by g1, ..., gn formally in f. subst : (%, List K, List %) -> % ++ subst(f, [k1..., kn], [g1, ..., gn]) replaces the kernels k1, ..., kn ++ by g1, ..., gn formally in f. box : % -> % ++ box(f) returns f with a 'box' around it that prevents f from ++ being evaluated when operators are applied to it. For example, ++ \spad{log(1)} returns 0, but \spad{log(box 1)} ++ returns the formal kernel log(1). box : List % -> % ++ box([f1, ..., fn]) returns \spad{(f1, ..., fn)} with a 'box' ++ around them that ++ prevents the fi from being evaluated when operators are applied to ++ them, and makes them applicable to a unary operator. For example, ++ \spad{atan(box [x, 2])} returns the formal kernel \spad{atan(x, 2)}. paren : % -> % ++ paren(f) returns (f). This prevents f from ++ being evaluated when operators are applied to it. For example, ++ \spad{log(1)} returns 0, but \spad{log(paren 1)} returns the ++ formal kernel log((1)). paren : List % -> % ++ paren([f1, ..., fn]) returns \spad{(f1, ..., fn)}. This ++ prevents the fi from being evaluated when operators are applied to ++ them, and makes them applicable to a unary operator. For example, ++ \spad{atan(paren [x, 2])} returns the formal ++ kernel \spad{atan((x, 2))}. distribute : % -> % ++ distribute(f) expands all the kernels in f that are ++ formally enclosed by a \spadfunFrom{box}{ExpressionSpace} ++ or \spadfunFrom{paren}{ExpressionSpace} expression. distribute : (%, %) -> % ++ distribute(f, g) expands all the kernels in f that contain g in their ++ arguments and that are formally ++ enclosed by a \spadfunFrom{box}{ExpressionSpace} ++ or a \spadfunFrom{paren}{ExpressionSpace} expression. height : % -> N ++ height(f) returns the highest nesting level appearing in f. ++ Constants have height 0. Symbols have height 1. For any ++ operator op and expressions f1, ..., fn, \spad{op(f1, ..., fn)} has ++ height equal to \spad{1 + max(height(f1), ..., height(fn))}. mainKernel : % -> Union(K, "failed") ++ mainKernel(f) returns a kernel of f with maximum nesting level, or ++ if f has no kernels (i.e. f is a constant). kernels : % -> List K ++ kernels(f) returns the list of all the top-level kernels ++ appearing in f, but not the ones appearing in the arguments ++ of the top-level kernels. kernels : List(%) -> List K ++ kernels(([f1,...,fn]) returns the list of all the top-level ++ kernels appearing in f1, ..., fn but not the ones appearing ++ in the arguments of the top-level kernels. tower : % -> List K ++ tower(f) returns all the kernels appearing in f, no matter ++ what their levels are. tower : List(%) -> List K ++ tower([f1,...,fn]) returns all the kernels appearing in ++ f1, ..., fn no matter what their levels are. operators : % -> List OP ++ operators(f) returns all the basic operators appearing in f, ++ no matter what their levels are. operator : OP -> OP ++ operator(op) returns a copy of op with the domain-dependent ++ properties appropriate for %. belong? : OP -> Boolean ++ belong?(op) tests if % accepts op as applicable to its ++ elements. is? : (%, OP) -> Boolean ++ is?(x, op) tests if x is a kernel and is its operator is op. is? : (%, SY) -> Boolean ++ is?(x, s) tests if x is a kernel and is the name of its ++ operator is s. kernel : (OP, %) -> % ++ kernel(op, x) constructs op(x) without evaluating it. kernel : (OP, List %) -> % ++ kernel(op, [f1, ..., fn]) constructs \spad{op(f1, ..., fn)} without ++ evaluating it. map : (% -> %, K) -> % ++ map(f, k) returns \spad{op(f(x1), ..., f(xn))} where ++ \spad{k = op(x1, ..., xn)}. freeOf? : (%, %) -> Boolean ++ freeOf?(x, y) tests if x does not contain any occurrence of y, ++ where y is a single kernel. freeOf? : (%, SY) -> Boolean ++ freeOf?(x, s) tests if x does not contain any operator ++ whose name is s. eval : (%, List SY, List(% -> %)) -> % ++ eval(x, [s1, ..., sm], [f1, ..., fm]) replaces ++ every \spad{si(a)} in x by \spad{fi(a)} for any \spad{a}. eval : (%, List SY, List(List % -> %)) -> % ++ eval(x, [s1, ..., sm], [f1, ..., fm]) replaces ++ every \spad{si(a1, ..., an)} in x by ++ \spad{fi(a1, ..., an)} for any \spad{a1}, ..., \spad{an}. eval : (%, SY, List % -> %) -> % ++ eval(x, s, f) replaces every \spad{s(a1, .., am)} in x ++ by \spad{f(a1, .., am)} for any \spad{a1}, ..., \spad{am}. eval : (%, SY, % -> %) -> % ++ eval(x, s, f) replaces every \spad{s(a)} in x by \spad{f(a)} ++ for any \spad{a}. eval : (%, List OP, List(% -> %)) -> % ++ eval(x, [s1, ..., sm], [f1, ..., fm]) replaces ++ every \spad{si(a)} in x by \spad{fi(a)} for any \spad{a}. eval : (%, List OP, List(List % -> %)) -> % ++ eval(x, [s1, ..., sm], [f1, ..., fm]) replaces ++ every \spad{si(a1, ..., an)} in x by ++ \spad{fi(a1, ..., an)} for any \spad{a1}, ..., \spad{an}. eval : (%, OP, List % -> %) -> % ++ eval(x, s, f) replaces every \spad{s(a1, .., am)} in x ++ by \spad{f(a1, .., am)} for any \spad{a1}, ..., \spad{am}. eval : (%, OP, % -> %) -> % ++ eval(x, s, f) replaces every \spad{s(a)} in x by \spad{f(a)} ++ for any \spad{a}. if % has Ring then minPoly : K -> SparseUnivariatePolynomial % ++ minPoly(k) returns p such that \spad{p(k) = 0}. definingPolynomial : % -> % ++ definingPolynomial(x) returns an expression p such that ++ \spad{p(x) = 0}. if % has RetractableTo Integer then even? : % -> Boolean ++ even? x is true if x is an even integer. odd? : % -> Boolean ++ odd? x is true if x is an odd integer.
add
import from Set(K) import from List(K) import from List(Set(K)) import from List(NonNegativeInteger) import from List(Symbol)
DUMMYVAR := '%dummyVar -- the 7 functions not provided are: -- kernels minPoly definingPolynomial -- coerce: K -> % eval: (%, List K, List %) -> % -- subst: (%, List K, List %) -> % -- eval: (%, List Symbol, List(List % -> %)) -> %
allKernels : % -> Set K listk : % -> List K allk : List % -> Set K unwrap : (List K, %) -> % okkernel : (OP, List %) -> % mkKerLists : List Equation % -> Record(lstk : List K, lstv : List %)
oppren := operator(PAREN)$CommonOperators() opbox := operator(BOX)$CommonOperators()
box(x : %) == box [x] paren(x : %) == paren [x] belong? op == has?(op, 'any) and (is?(op, PAREN) or is?(op, BOX)) listk f == parts allKernels f tower(f : %) : List(K) == sort! listk f allk l == reduce("union", [allKernels f for f in l], set()) tower(lf : List(%)) : List(K) == sort! parts allk(lf) kernels(lf : List(%)) : List(K) == reduce(setUnion$List(K), [kernels(f) for f in lf], [])$List(List(K)) operators f == [operator k for k in listk f] height f == reduce("max", [height k for k in kernels f], 0) freeOf?(x : %, s : SY) == not member?(s, [name k for k in listk x]) distribute x == unwrap([k for k in listk x | is?(k, oppren)], x) box(l : List %) == opbox l paren(l : List %) == oppren l freeOf?(x : %, k : %) == not member?(retract k, listk x) kernel(op : OP, arg : %) == kernel(op, [arg]) elt(op : OP, x : %) == op [x] elt(op : OP, x : %, y : %) == op [x, y] elt(op : OP, x : %, y : %, z : %) == op [x, y, z] elt(op : OP, x : %, y : %, z : %, t : %) == op [x, y, z, t] elt(op : OP, x : %, y : %, z : %, t : %, s : %) == op [x, y, z, t, s] elt(op : OP, x : %, y : %, z : %, t : %, s : %, r : %) == op [x, y, z, t, s, r] elt(op : OP, x : %, y : %, z : %, t : %, s : %, r : %, q : %) == op [x, y, z, t, s, r, q] elt(op : OP, x : %, y : %, z : %, t : %, s : %, r : %, q : %, p : %) == op [x, y, z, t, s, r, q, p] elt(op : OP, x : %, y : %, z : %, t : %, s : %, r : %, q : %, p : %, o : %) == op [x, y, z, t, s, r, q, p, o] eval(x : %, s : SY, f : List % -> %) == eval(x, [s], [f]) eval(x : %, s : OP, f : List % -> %) == eval(x, [name s], [f]) eval(x : %, s : SY, f : % -> %) == eval(x, [s], [(y : List %) : % +-> f(first y)]) eval(x : %, s : OP, f : % -> %) == eval(x, [s], [(y : List %) : % +-> f(first y)]) subst(x : %, e : Equation %) == subst(x, [e])
eval(x : %, ls : List OP, lf : List(% -> %)) == eval(x, ls, [y +-> f(first y) for f in lf]$List(List % -> %))
eval(x : %, ls : List SY, lf : List(% -> %)) == eval(x, ls, [y +-> f(first y) for f in lf]$List(List % -> %))
eval(x : %, ls : List OP, lf : List(List % -> %)) == eval(x, [name s for s in ls]$List(SY), lf)
map(fn, k) == (l := [fn x for x in argument k]$List(%)) = argument k => k::% (operator k) l
operator op == is?(op, PAREN) => oppren is?(op, BOX) => opbox error concat("Unknown operator 1: ",string(name(op)))$String
mainKernel x == empty?(l := kernels x) => "failed" n := height(k := first l) for kk in rest l repeat if height(kk) > n then n := height kk k := kk k
-- takes all the kernels except for the dummy variables, which are second -- arguments of rootOf's, integrals, sums and products which appear only in -- their first arguments allKernels f == s := brace(l := kernels f) for k in l repeat t := (u := property(operator k, DUMMYVAR)) case None => arg := argument k s0 := remove!(retract(second arg)@K, allKernels first arg) arg := rest rest arg n := (u::None) pretend N if n > 1 then arg := rest arg union(s0, allk arg) allk argument k s := union(s, t) s
kernel(op : OP, args : List %) == not belong? op => error concat("Unknown operator 2: ",string(name(op)))$String okkernel(op, args)
okkernel(op, l) == kernel(op, l, 1 + reduce("max", [height f for f in l], 0))$K :: %
elt(op : OP, args : List %) == not belong? op => error concat("Unknown operator 3: ",string(name(op)))$String ((u := arity op) case N) and (#args ~= u::N) => error "Wrong number of arguments" (v := evaluate(op, args)$BasicOperatorFunctions1(%)) case % => v::% okkernel(op, args)
retract f == (k := mainKernel f) case "failed" => error "not a kernel" k::K::% ~= f => error "not a kernel" k::K
retractIfCan f == (k := mainKernel f) case "failed" => "failed" k::K::% ~= f => "failed" k
is?(f : %, s : SY) == (k := retractIfCan f) case "failed" => false is?(k::K, s)
is?(f : %, op : OP) == (k := retractIfCan f) case "failed" => false is?(k::K, op)
unwrap(l, x) == for k in reverse! l repeat x := eval(x, k, first argument k) x
distribute(x, y) == ky := retract y unwrap([k for k in listk x | is?(k, '%paren) and member?(ky, listk(k::%))], x)
-- in case of conflicting substitutions e.g. [x = a, x = b], -- the first one prevails. -- this is not part of the semantics of the function, but just -- a feature of this implementation. eval(f : %, leq : List Equation %) == rec := mkKerLists leq eval(f, rec.lstk, rec.lstv)
subst(f : %, leq : List Equation %) == rec := mkKerLists leq subst(f, rec.lstk, rec.lstv)
mkKerLists leq == lk := empty()$List(K) lv := empty()$List(%) for eq in leq repeat (k := retractIfCan(lhs eq)@Union(K, "failed")) case "failed" => error "left hand side must be a single kernel" if not member?(k::K, lk) then lk := concat(k::K, lk) lv := concat(rhs eq, lv) [lk, lv]
if % has RetractableTo Integer then intpred? : (%, Integer -> Boolean) -> Boolean
even? x == intpred?(x, even?) odd? x == intpred?(x, odd?)
intpred?(x, pred?) == (u := retractIfCan(x)@Union(Integer, "failed")) case Integer and pred?(u::Integer)
)abbrev package ES1 ExpressionSpaceFunctions1 ++ Lifting of maps from expression spaces to kernels over them ++ Author: Manuel Bronstein ++ Date Created: 23 March 1988 ++ Date Last Updated: 19 April 1991 ++ Description: ++ This package allows a map from any expression space into any object ++ to be lifted to a kernel over the expression set, using a given ++ property of the operator of the kernel. -- should not be exposed ExpressionSpaceFunctions1(F : ExpressionSpace, S : Type) : with map : (F -> S, Symbol, Kernel F) -> S ++ map(f, p, k) uses the property p of the operator ++ of k, in order to lift f and apply it to k.
== add -- prop contains an evaluation function List S -> S map(F2S, prop, k) == args := [F2S x for x in argument k]$List(S) (p := property(operator k, prop)) case None => ((p::None) pretend (List S -> S)) args error "Operator does not have required property"
)abbrev package ES2 ExpressionSpaceFunctions2 ++ Lifting of maps from expression spaces to kernels over them ++ Author: Manuel Bronstein ++ Date Created: 23 March 1988 ++ Date Last Updated: 19 April 1991 ++ Description: ++ This package allows a mapping E -> F to be lifted to a kernel over E; ++ This lifting can fail if the operator of the kernel cannot be applied ++ in F; Do not use this package with E = F, since this may ++ drop some properties of the operators. ExpressionSpaceFunctions2(E : ExpressionSpace, F : ExpressionSpace) : with map : (E -> F, Kernel E) -> F ++ map(f, k) returns \spad{g = op(f(a1), ..., f(an))} where ++ \spad{k = op(a1, ..., an)}. == add map(f, k) == (operator(operator k)$F) [f x for x in argument k]$List(F)
)abbrev category FS FunctionSpace ++ Category for formal functions ++ Author: Manuel Bronstein ++ Date Created: 22 March 1988 ++ Date Last Updated: 14 February 1994 ++ Description: ++ A space of formal functions with arguments in an arbitrary ++ ordered set. ++ Keywords: operator, kernel, function. FunctionSpace(R : Comparable) : Category == Definition where OP ==> BasicOperator O ==> OutputForm SY ==> Symbol N ==> NonNegativeInteger Z ==> Integer K ==> Kernel % Q ==> Fraction R PR ==> Polynomial R MP ==> SparseMultivariatePolynomial(R, K) QF==> PolynomialCategoryQuotientFunctions(IndexedExponents K, K, R, MP, %) FSPECF ==> FunctionalSpecialFunction
SPECIALDISP ==> '%specialDisp SPECIALEQUAL ==> '%specialEqual SPECIALINPUT ==> '%specialInput
Definition ==> Join(ExpressionSpace, RetractableTo SY, Patternable R, FullyPatternMatchable R, FullyRetractableTo R) with ground? : % -> Boolean ++ ground?(f) tests if f is an element of R. ground : % -> R ++ ground(f) returns f as an element of R. ++ An error occurs if f is not an element of R. variables : % -> List SY ++ variables(f) returns the list of all the variables of f. variables : List(%) -> List SY ++ variables([f1, ..., fn]) returns the list of all the ++ variables of f1, ..., fn. applyQuote : (SY, %) -> % ++ applyQuote(foo, x) returns \spad{'foo(x)}. applyQuote : (SY, %, %) -> % ++ applyQuote(foo, x, y) returns \spad{'foo(x, y)}. applyQuote : (SY, %, %, %) -> % ++ applyQuote(foo, x, y, z) returns \spad{'foo(x, y, z)}. applyQuote : (SY, %, %, %, %) -> % ++ applyQuote(foo, x, y, z, t) returns \spad{'foo(x, y, z, t)}. applyQuote : (SY, List %) -> % ++ applyQuote(foo, [x1, ..., xn]) returns \spad{'foo(x1, ..., xn)}. if R has ConvertibleTo InputForm then ConvertibleTo InputForm eval : (%, SY) -> % ++ eval(f, foo) unquotes all the foo's in f. eval : (%, List SY) -> % ++ eval(f, [foo1, ..., foon]) unquotes all the \spad{fooi}'s in f. eval : % -> % ++ eval(f) unquotes all the quoted operators in f. eval : (%, OP, %, SY) -> % ++ eval(x, s, f, y) replaces every \spad{s(a)} in x by \spad{f(y)} ++ with \spad{y} replaced by \spad{a} for any \spad{a}. eval : (%, List OP, List %, SY) -> % ++ eval(x, [s1, ..., sm], [f1, ..., fm], y) replaces every ++ \spad{si(a)} in x by \spad{fi(y)} ++ with \spad{y} replaced by \spad{a} for any \spad{a}. if R has SemiGroup then Monoid isTimes : % -> Union(List %, "failed") ++ isTimes(p) returns \spad{[a1, ..., an]} ++ if \spad{p = a1*...*an} and \spad{n > 1}. isExpt : % -> Union(Record(var:K,exponent:Z),"failed") ++ isExpt(p) returns \spad{[x, n]} if \spad{p = x^n} ++ and \spad{n <> 0}. if R has Group then Group if R has AbelianSemiGroup then AbelianMonoid isPlus : % -> Union(List %, "failed") ++ isPlus(p) returns \spad{[m1, ..., mn]} ++ if \spad{p = m1 +...+ mn} and \spad{n > 1}. isMult : % -> Union(Record(coef:Z, var:K),"failed") ++ isMult(p) returns \spad{[n, x]} if \spad{p = n * x} ++ and \spad{n <> 0}. if R has AbelianGroup then AbelianGroup if R has Ring then Ring RetractableTo PR PartialDifferentialRing SY FullyLinearlyExplicitRingOver R coerce : MP -> % ++ coerce(p) returns p as an element of %. numer : % -> MP ++ numer(f) returns the ++ numerator of f viewed as a polynomial in the kernels over R ++ if R is an integral domain. If not, then numer(f) = f viewed ++ as a polynomial in the kernels over R. -- DO NOT change this meaning of numer! MB 1/90 numerator : % -> % ++ numerator(f) returns the numerator of \spad{f} converted to %. isExpt:(%,OP) -> Union(Record(var:K,exponent:Z),"failed") ++ isExpt(p, op) returns \spad{[x, n]} if \spad{p = x^n} ++ and \spad{n <> 0} and \spad{x = op(a)}. isExpt:(%,SY) -> Union(Record(var:K,exponent:Z),"failed") ++ isExpt(p, f) returns \spad{[x, n]} if \spad{p = x^n} ++ and \spad{n <> 0} and \spad{x = f(a)}. isPower : % -> Union(Record(val:%,exponent:Z),"failed") ++ isPower(p) returns \spad{[x, n]} if \spad{p = x^n} ++ and \spad{n <> 0}. eval : (%, List SY, List N, List(% -> %)) -> % ++ eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces ++ every \spad{si(a)^ni} in x by \spad{fi(a)} for any \spad{a}. eval : (%, List SY, List N, List(List % -> %)) -> % ++ eval(x, [s1, ..., sm], [n1, ..., nm], [f1, ..., fm]) replaces ++ every \spad{si(a1, ..., an)^ni} in x by \spad{fi(a1, ..., an)} ++ for any a1, ..., am. eval : (%, SY, N, List % -> %) -> % ++ eval(x, s, n, f) replaces every \spad{s(a1, ..., am)^n} in x ++ by \spad{f(a1, ..., am)} for any a1, ..., am. eval : (%, SY, N, % -> %) -> % ++ eval(x, s, n, f) replaces every \spad{s(a)^n} in x ++ by \spad{f(a)} for any \spad{a}. if R has CharacteristicZero then CharacteristicZero if R has CharacteristicNonZero then CharacteristicNonZero if R has CommutativeRing then Algebra R if R has IntegralDomain then Field RetractableTo Fraction PR algtower : % -> List K ++ algtower(f) is algtower([f]) algtower : List % -> List K ++ algtower([f1, ..., fn]) returns list of kernels ++ \spad{[ak1, ..., akl]} such that each toplevel ++ algebraic kernel in one of f1, ..., fn or in arguments ++ of ak1, ..., akl is one of ak1, ..., akl. convert : Factored % -> % ++ convert(f1\^e1 ... fm\^em) returns \spad{(f1)\^e1 ... (fm)\^em} ++ as an element of %, using formal kernels ++ created using a \spadfunFrom{paren}{ExpressionSpace}. denom : % -> MP ++ denom(f) returns the denominator of f viewed as a ++ polynomial in the kernels over R. denominator : % -> % ++ denominator(f) returns the denominator of \spad{f} converted to %. "/" : (MP, MP) -> % ++ p1/p2 returns the quotient of p1 and p2 as an element of %. coerce : Q -> % ++ coerce(q) returns q as an element of %. coerce : Polynomial Q -> % ++ coerce(p) returns p as an element of %. coerce : Fraction Polynomial Q -> % ++ coerce(f) returns f as an element of %. univariate : (%, K) -> Fraction SparseUnivariatePolynomial % ++ univariate(f, k) returns f viewed as a univariate fraction in k. if R has RetractableTo Z then RetractableTo Fraction Z add
import from BasicOperatorFunctions1(%) import from K import from Integer import from NonNegativeInteger import from String import from List(OutputForm) import from List(%)
ODD := 'odd EVEN := 'even SPECIALDIFF := '%specialDiff
-- these are needed in Ring only, but need to be declared here -- because of compiler bug: if they are declared inside the Ring -- case, then they are not visible inside the IntegralDomain case. smpIsMult : MP -> Union(Record(coef:Z, var:K),"failed") smpret : MP -> Union(PR, "failed") smpeval : (MP, List K, List %) -> % smpsubst : (MP, List K, List %) -> % smpderiv : (MP, SY) -> % smpunq : (MP, List SY, Boolean) -> % kerderiv : (K, SY) -> % kderiv : K -> List % opderiv : (OP, N) -> List(List % -> %) smp2O : MP -> O bestKernel : List K -> K worse? : (K, K) -> Boolean diffArg : (List %, OP, N) -> List % dispdiff : List % -> Record(name : O, sub : O, arg : List O, orig_op : OP, level : N) ddiff : List % -> O diffEval : List % -> % dfeval : (List %, K) -> % smprep : (List SY, List N, List(List % -> %), MP) -> % diffdiff : (List %, SY) -> % subs : (% -> %, K) -> % symsub : (SY, Z) -> SY kunq : (K, List SY, Boolean) -> % pushunq : (List SY, List %) -> List % notfound : (K -> %, List K) -> (K -> %)
equaldiff : (K, K)->Boolean debugA : (List % , List %, Boolean) -> Boolean opdiff := operator('%diff)$CommonOperators opquote := operator('%quote)$CommonOperators
ground? x == retractIfCan(x)@Union(R,"failed") case R ground x == retract x coerce(x : SY) : % == kernel(x)@K :: % retract(x : %) : SY == symbolIfCan(retract(x)@K)::SY applyQuote(s : SY, x : %) == applyQuote(s, [x]) applyQuote(s, x, y) == applyQuote(s, [x, y]) applyQuote(s, x, y, z) == applyQuote(s, [x, y, z]) applyQuote(s, x, y, z, t) == applyQuote(s, [x, y, z, t]) applyQuote(s : SY, l : List %) == opquote concat(s::%, l) belong? op == has?(op, 'any) and (is?(op, '%diff) or is?(op, '%quote)) subs(fn, k) == kernel(operator k, [fn x for x in argument k]$List(%))
operator op == is?(op, '%diff) => opdiff is?(op, '%quote) => opquote error concat("Unknown operator 4: ",string(name(op)))$String
if R has ConvertibleTo InputForm then INP==>InputForm import from MakeUnaryCompiledFunction(%, %, %) indiff : List % -> INP pint : List INP-> INP differentiand : List % -> %
differentiand l == eval(first l, retract(second l)@K, third l) pint l == convert concat(convert('D)@INP, l) indiff l == r2 := convert([convert("::"::SY)@INP,convert(third l)@INP,convert('Symbol)@INP]@List INP)@INP pint [convert(differentiand l)@INP, r2] eval(f : %, s : SY) == eval(f, [s]) eval(f : %, s : OP, g : %, x : SY) == eval(f, [s], [g], x)
eval(f : %, ls : List OP, lg : List %, x : SY) == eval(f, ls, [compiledFunction(g, x) for g in lg])
setProperty(opdiff, SPECIALINPUT, indiff@(List % -> InputForm) pretend None)
variables(lx : List(%)) == l := empty()$List(SY) for k in tower lx repeat if ((s := symbolIfCan k) case SY) then l := concat(s::SY, l) reverse! l
variables(x : %) == variables([x])
retractIfCan(x:%):Union(SY, "failed") == (k := retractIfCan(x)@Union(K,"failed")) case "failed" => "failed" symbolIfCan(k::K)
if R has Ring then
import from UserDefinedPartialOrdering(SY) import from MP import from SparseUnivariatePolynomial(%)
-- cannot use new()$Symbol because of possible re-instantiation gendiff := '%%0
characteristic() == characteristic()$R coerce(k : K) : % == k::MP::% symsub(sy, i) == new()$Symbol numerator x == numer(x)::% eval(x : %, s : SY, n : N, f : % -> %) == eval(x, [s], [n], [(y : List %) : % +-> f(first(y))]) eval(x : %, s : SY, n : N, f : List % -> %) == eval(x, [s], [n], [f]) eval(x : %, l : List SY, f : List(List % -> %)) == eval(x, l, new(#l, 1), f)
elt(op : OP, args : List %) == unary? op and ((od? := has?(op, ODD)) or has?(op, EVEN)) and smaller?(leadingCoefficient(numer first args), 0) => x := op(- first args) od? => -x x elt(op, args)$ExpressionSpace_&(%)
eval(x : %, s : List SY, n : List N, l : List(% -> %)) == eval(x, s, n, [y +-> f(first(y)) for f in l]$List(List % -> %))
-- op(arg)^m ==> func(arg)^(m quo n) * op(arg)^(m rem n) smprep(lop, lexp, lfunc, p) == (v := mainVariable p) case "failed" => p::% -- symbolIfCan(k := v::K) case SY => p::% k := v::K g := (op := operator k) (arg := [eval(a, lop, lexp, lfunc) for a in argument k]$List(%)) q := map(y +-> eval(y::%, lop, lexp, lfunc), univariate(p, k))$SparseUnivariatePolynomialFunctions2(MP, %) (n := position(name op, lop)) < minIndex lop => q g a : % := 0 f := eval((lfunc.n) arg, lop, lexp, lfunc) e := lexp.n while q ~= 0 repeat m := degree q qr := divide(m, e) t1 := f ^ (qr.quotient)::N t2 := g ^ (qr.remainder)::N a := a + leadingCoefficient(q) * t1 * t2 q := reductum q a
dispdiff l == s := second(l)::O t := third(l)::O a := argument(k := retract(first l)@K) is?(k, opdiff) => rec := dispdiff a i := position(s, rec.arg) rec.arg.i := t [rec.name, hconcat(rec.sub, hconcat(","::SY::O, (i+1-minIndex a)::O)), rec.arg, rec.orig_op, (zero?(rec.level) => 0; rec.level + 1)] i := position(second l, a) m := [x::O for x in a]$List(O) m.i := t [name(operator k)::O, hconcat(","::SY::O, (i+1-minIndex a)::O), m, operator(k), (empty? rest a => 1; 0)]
ddiff l == rec := dispdiff l opname := zero?(rec.level) => sub(rec.name, rec.sub) differentiate(rec.name, rec.level) (f := property(rec.orig_op, '%diffDisp)) case None => ((f::None) pretend (List OutputForm -> OutputForm)) (cons(opname, rec.arg)) prefix(opname, rec.arg)
Dec_Rec ==> Record(orig_k : K, sub : List(Integer), oarg : List %, arg : List %, dummies : List(%))
decode_diff : (List %) -> Dec_Rec
encode_diff(ker : K, nsub : List(Integer), args : List(%), nd : List(%)) : % == li : List(Integer) := [] lk : List(Integer) := [] i := first(nsub) k : Integer := 1 nsub := rest(nsub) while not(empty?(nsub)) repeat ii := first(nsub) nsub := rest(nsub) ii = i => k := k + 1 lk := cons(k, lk) li := cons(i, li) i := ii k := 1 lk := cons(k, lk) li := cons(i, li) nargs := copy(args) pts : List % := [] for i in reverse(li) for dm in nd repeat pts := cons(nargs(i), pts) nargs(i) := dm res := kernel(operator(ker), nargs) for i in li for k in lk for pt in pts for dm in reverse(nd) repeat for kk in 2..k repeat res := kernel(opdiff, [res, dm, dm]) res := kernel(opdiff, [res, dm, pt]) res
insert_sub(lsub : List(Integer), j : Integer) : List(Integer) == nsub : List(Integer) := [] to_insert : Boolean := true for i in lsub repeat if to_insert and not(i > j) then nsub := cons(j, nsub) to_insert := false nsub := cons(i, nsub) if to_insert then nsub := cons(j, nsub) reverse!(nsub)
pos_diff(l : List %, r1 : Dec_Rec, i : Integer) : % == nsub := insert_sub(r1.sub, i) nd := r1.dummies if not(member?(i, r1.sub)$List(Integer)) then k : NonNegativeInteger := 0 ii := first(nsub) for j in nsub repeat i = j => break if not(ii = j) then k := k + 1 nd1 := first(nd, k)$List(%) nd2 := rest(nd, k) dm := (new()$Symbol)::% nd := concat(nd1, cons(dm, nd2)) encode_diff(r1.orig_k, nsub, r1.arg, nd)
diffdiff(l, x) == r1 := decode_diff(l) args := r1.arg res : % := 0 for i in minIndex args .. maxIndex args for b in args repeat (db := differentiate(b, x)) = 0 => "iterate" res := res + db*pos_diff(l, r1, i) res
dfeval(l, g) == eval(differentiate(first l, symbolIfCan(g)::SY), g, third l)
diffEval l == k : K g := retract(second l)@K ((u := retractIfCan(first l)@Union(K, "failed")) case "failed") or (u case K and symbolIfCan(k := u::K) case SY) => dfeval(l, g) op := operator k (ud := derivative op) case "failed" => -- possible trouble -- make sure it is a dummy var dumm : % := symsub(gendiff, 1)::% ss := subst(l.1, l.2 = dumm) -- output(nl::OutputForm)$OutputPackage -- output("fixed"::OutputForm)$OutputPackage nl := [ss, dumm, l.3] kernel(opdiff, nl) (n := position(second l, argument k)) < minIndex l => dfeval(l, g) d := ud::List(List % -> %) eval((d.n)(argument k), g, third l)
diffArg(l, op, i) == n := i - 1 + minIndex l z := copy l z.n := g := symsub(gendiff, n)::% [kernel(op, z), g, l.n]
opderiv(op, n) == -- one? n => (n = 1) => g := symsub(gendiff, n)::% [x +-> kernel(opdiff, [kernel(op, g), g, first x])] [x +-> kernel(opdiff, diffArg(x, op, i)) for i in 1..n]
kderiv k == --output("kderiv k: ",k::OutputForm)$OutputPackage zero?(n := #(args := argument k)) => empty() op := operator k grad := (u := derivative op) case "failed" => opderiv(op, n) u::List(List % -> %) --output("kderiv grad: ",grad::OutputForm)$OutputPackage if #grad ~= n then grad := opderiv(op, n) gs:=[g args for g in grad] --output("kderiv gs: ",gs::OutputForm)$OutputPackage return gs
smpderiv(p, x) == map((s : R) : R +-> retract differentiate(s::PR, x), p)::% + +/[differentiate(p, k)::% * kerderiv(k, x) for k in variables p]
coerce(p : PR) : % == map(s +-> s::%, s+-> s::%, p)$PolynomialCategoryLifting( IndexedExponents SY, SY, R, PR, %)
worse?(k1, k2) == (u := less?(name operator k1,name operator k2)) case "failed" => k1 < k2 u::Boolean
bestKernel l == empty? rest l => first l a := bestKernel rest l worse?(first l, a) => a first l
smp2O p == (r := retractIfCan(p)@Union(R,"failed")) case R =>r::R::OutputForm a := userOrdered?() => bestKernel variables p mainVariable(p)::K outputForm(map((x : MP) : % +-> x::%, univariate(p, a))$SparseUnivariatePolynomialFunctions2(MP, %), a::OutputForm)
smpsubst(p, lk, lv) == map(x +-> match(lk, lv, x, notfound((z : K) : % +-> subs(s +-> subst(s, lk, lv), z), lk))$ListToMap(K, %), y +-> y::%, p)$PolynomialCategoryLifting(IndexedExponents K, K, R, MP, %)
smpeval(p, lk, lv) == map(x +-> match(lk, lv, x, notfound((z : K) : % +-> map(s +-> eval(s, lk, lv), z), lk))$ListToMap(K, %), y +-> y::%, p)$PolynomialCategoryLifting(IndexedExponents K, K, R, MP, %)
-- this is called on k when k is not a member of lk notfound(fn, lk) == k +-> empty? setIntersection(tower(f := k::%), lk) => f fn k
if R has ConvertibleTo InputForm then pushunq(l, arg) == empty? l => [eval a for a in arg] [eval(a, l) for a in arg]
kunq(k, l, givenlist?) == givenlist? and empty? l => k::% is?(k, opquote) and (member?(s := retract(first argument k)@SY, l) or empty? l) => interpret(convert(concat(convert(s)@InputForm, [convert a for a in pushunq(l, rest argument k) ]@List(InputForm)))@InputForm)$InputFormFunctions1(%) (operator k) pushunq(l, argument k)
smpunq(p, l, givenlist?) == givenlist? and empty? l => p::% map(x +-> kunq(x, l, givenlist?), y +-> y::%, p)$PolynomialCategoryLifting(IndexedExponents K, K, R, MP, %)
smpret p == "or"/[symbolIfCan(k) case "failed" for k in variables p] => "failed" map(x +-> symbolIfCan(x)::SY::PR, y +-> y::PR, p)$PolynomialCategoryLifting(IndexedExponents K, K, R, MP, PR)
isExpt(x : %, op : OP) == (u := isExpt x) case "failed" => "failed" v := (u::Record(var : K, exponent : Z)).var is?(v, op) and #argument(v) = 1 => u "failed"
isExpt(x : %, sy : SY) == (u := isExpt x) case "failed" => "failed" v := (u::Record(var : K, exponent : Z)).var is?(v, sy) and #argument(v) = 1 => u "failed"
if R has RetractableTo Z then smpIsMult p == -- (u := mainVariable p) case K and one? degree(q := univariate(p, u::K)) (u := mainVariable p) case K and (degree(q := univariate(p, u::K))=1) and zero?(leadingCoefficient reductum q) and ((r := retractIfCan(leadingCoefficient q)@Union(R,"failed")) case R) and (n := retractIfCan(r::R)@Union(Z, "failed")) case Z => [n::Z, u::K] "failed"
evaluate(opdiff, diffEval)
debugA(a1, a2, t) == -- uncomment for debugging -- output(hconcat [a1::OutputForm, a2::OutputForm, t::OutputForm])$OutputPackage t
decode_diff(l : List %) : Dec_Rec == da := second(l) pt := third(l) a := argument(k := retract(first l)@K) is?(k, opdiff) => rec := decode_diff(a) i := position(da, rec.arg) rec.arg.i := pt nd := rec.dummies )if false -- This would work with derivatives in canonical order i0 := first(rec.sub) i < i0 => print(l::OutputForm) error "Malformed formal derivative" if i > i0 then nd := cons(da, nd) )else -- For now no order if not(member?(i, rec.sub)$List(Integer)) then nd := cons(da, nd) )endif [rec.orig_k, cons(i, rec.sub), rec.oarg, rec.arg, nd] i := position(da, a) a1 := copy(a) a1.i := pt [k, [i], a, a1, [da]]
equaldiff(k1, k2) == a1 := argument k1 a2 := argument k2 -- check the operator res := operator k1 = operator k2 not res => debugA(a1, a2, res) -- check the evaluation point res := (a1.3 = a2.3) not res => debugA(a1, a2, res) a1.2 = a2.2 => a1.1 = a2.1 r1 := decode_diff(a1) r2 := decode_diff(a2) not(operator(r1.orig_k) = operator(r2.orig_k)) => false not(r1.sub =$List(Integer) r2.sub) => false not(r1.arg = r2.arg) => false od : List K := [retract(dk)@K for dk in r1.dummies] ok1 : % := (r1.orig_k)::% sk1 : % := subst(ok1, od, r2.dummies) sk1 = (r2.orig_k)::%
setProperty(opdiff, SPECIALEQUAL, equaldiff@((K, K) -> Boolean) pretend None) setProperty(opdiff, SPECIALDIFF, diffdiff@((List %, SY) -> %) pretend None) setProperty(opdiff, SPECIALDISP, ddiff@(List % -> OutputForm) pretend None)
if not(R has IntegralDomain) then -- SPECIALDIFF contains a map (List %, Symbol) -> % -- it is used when the usual chain rule does not apply, -- for instance with implicit algebraics. kerderiv(k, x) == (v := symbolIfCan(k)) case SY => v::SY = x => 1 0 (fn := property(operator k, SPECIALDIFF)) case None => ((fn::None) pretend ((List %, SY) -> %)) (argument k, x) +/[g * differentiate(y, x) for g in kderiv k for y in argument k]
mainKernel x == mainVariable numer x kernels(x : %) : List(K) == variables numer x retract(x : %) : R == retract numer x retract(x : %) : PR == smpret(numer x)::PR retractIfCan(x:%):Union(R, "failed") == retract numer x retractIfCan(x:%):Union(PR, "failed") == smpret numer x eval(x : %, lk : List K, lv : List %) == smpeval(numer x, lk, lv) subst(x : %, lk : List K, lv : List %) == smpsubst(numer x, lk, lv) differentiate(x : %, s : SY) == smpderiv(numer x, s) coerce(x : %) : OutputForm == smp2O numer x
if R has ConvertibleTo InputForm then eval(f : %, l : List SY) == smpunq(numer f, l, true) eval f == smpunq(numer f, empty(), false)
eval(x : %, s : List SY, n : List N, f : List(List % -> %)) == smprep(s, n, f, numer x)
isPlus x == (u := isPlus numer x) case "failed" => "failed" [p::% for p in u::List(MP)]
isTimes x == (u := isTimes numer x) case "failed" => "failed" [p::% for p in u::List(MP)]
isExpt x == (u := isExpt numer x) case "failed" => "failed" r := u::Record(var : K, exponent : NonNegativeInteger) [r.var, r.exponent::Z]
isPower x == (u := isExpt numer x) case "failed" => "failed" r := u::Record(var : K, exponent : NonNegativeInteger) [r.var::%, r.exponent::Z]
if R has ConvertibleTo Pattern Z then convert(x : %) : Pattern(Z) == convert numer x
if R has ConvertibleTo Pattern Float then convert(x : %) : Pattern(Float) == convert numer x
if R has RetractableTo Z then isMult x == smpIsMult numer x
if R has CommutativeRing then r : R * x : % == r::MP::% * x
if R has IntegralDomain then
import from Fraction(PR) import from MP
par : % -> %
mainKernel x == mainVariable(x)$QF kernels(x : %) : List(K) == variables(x)$QF univariate(x : %, k : K) == univariate(x, k)$QF isPlus x == isPlus(x)$QF isTimes x == isTimes(x)$QF isExpt x == isExpt(x)$QF isPower x == isPower(x)$QF denominator x == denom(x)::% coerce(q : Q) : % == (numer q)::MP / (denom q)::MP coerce(q : Fraction PR) : % == (numer q)::% / (denom q)::% coerce(q : Fraction Polynomial Q) == (numer q)::% / (denom q)::% retract(x : %) : PR == retract(retract(x)@Fraction(PR)) retract(x : %) : Fraction(PR) == smpret(numer x)::PR / smpret(denom x)::PR retract(x : %) : R == (retract(numer x)@R exquo retract(denom x)@R)::R
alg_ker_set(lx : List %) : List(K) == resl : List(K) := [] ak1 : List(K) := [] for x in lx repeat for k in kernels x repeat not(is?(k, 'nthRoot) or is?(k, 'rootOf)) => "iterate" ak1 := cons(k, ak1) while not(empty?(ak1)) repeat ak := ak1 ak1 := [] for k in ak repeat needed := true for k1 in resl while needed repeat if EQ(k1, k)$Lisp then needed := false for k1 in resl while needed repeat if k1 = k then needed := false not(needed) => "iterate" resl := cons(k, resl) ak1 := cons(k, ak1) arg := argument(k) for k1 in kernels(arg.1) repeat if (is?(k1, 'nthRoot) or is?(k1, 'rootOf)) then ak1 := cons(k1, ak1) resl
algtower(lx : List %) : List K == reverse!(sort! alg_ker_set(lx))
algtower(x : %) : List K == algtower([x])
coerce(x : %) : OutputForm == -- one?(denom x) => smp2O numer x ((denom x) = 1) => smp2O numer x smp2O(numer x) / smp2O(denom x)
retractIfCan(x:%):Union(R, "failed") == (n := retractIfCan(numer x)@Union(R, "failed")) case "failed" or (d := retractIfCan(denom x)@Union(R, "failed")) case "failed" or (r := n::R exquo d::R) case "failed" => "failed" r::R
eval(f : %, l : List SY) == smpunq(numer f, l, true) / smpunq(denom f, l, true)
if R has ConvertibleTo InputForm then eval f == smpunq(numer f, empty(), false) / smpunq(denom f, empty(), false)
eval(x : %, s : List SY, n : List N, f : List(List % -> %)) == smprep(s, n, f, numer x) / smprep(s, n, f, denom x)
-- cannot use new()$Symbol because of possible re-instantiation gendiff := '%%1
opderiv' : (OP, N) -> List(List % -> %) opderiv'(op, n) == -- one? n => (n = 1) => g := symsub(gendiff, n)::% [x +-> conjugate(kernel(opdiff, [kernel(conjugate op, g), g, first x]))$FSPECF(R,%)] [x +-> conjugate(kernel(opdiff, diffArg(x, conjugate op, i)))$FSPECF(R,%) for i in 1..n]
kderiv' : K -> List % kderiv' k == --output("kderiv' k: ",k::OutputForm)$OutputPackage zero?(n := #(args := argument k)) => empty() op := operator k grad := (u := derivative conjugate op) case "failed" => opderiv'(op, n) u::List(List % -> %) --output("kderiv' grad: ",grad::OutputForm)$OutputPackage if #grad ~= n then grad := opderiv'(op, n) gs:=[g args for g in grad] --output("kderiv' gs: ",gs::OutputForm)$OutputPackage return gs
-- Wirtinger's chain rule kerderiv(k, x) == --output("kerderiv(k,x): ",paren([k::OutputForm,x::OutputForm]))$OutputPackage if (v := symbolIfCan(k)) case SY then if v::SY = x then k1:=1 else k1:=0 --output("kerderiv k1+k2: ",k1::OutputForm)$OutputPackage return k1 if is?(k,'conjugate) then if (v := retractIfCan(argument(k)(1))@Union(SY,"failed")) case SY then k1:=0 --output("kerderiv k1+k2: ",k1::OutputForm)$OutputPackage return k1
(fn := property(operator k, SPECIALDIFF)) case None => ((fn::None) pretend ((List %, SY) -> %)) (argument k, x) k1:= +/[(g=0=>0;g * differentiate(y, x)) _ for g in kderiv k for y in argument k] --output("kerderiv k1: ",k1::OutputForm)$OutputPackage
gs:=kderiv' k ys:=argument k --output("kerderiv ys: ",ys::OutputForm)$OutputPackage k2:= +/[(g'=0=>0; g' * differentiate(conjugate(y)$FSPECF(R,%), x)) _ for g' in gs for y in ys] -- eval(g',[coerce('%conjugate)@%],[conjugate(coerce(x)@%)$FSPECF(R,%)]) --output("kerderiv k2: ",k2::OutputForm)$OutputPackage --output("kerderiv k1+k2: ",(k1+k2)::OutputForm)$OutputPackage return k1+k2
differentiate(f : %, x : SY) == (smpderiv(numer f, x) * denom(f)::% - numer(f)::% * smpderiv(denom f, x)) / (denom(f)::% ^ 2)
eval(x : %, lk : List K, lv : List %) == smpeval(numer x, lk, lv) / smpeval(denom x, lk, lv)
subst(x : %, lk : List K, lv : List %) == smpsubst(numer x, lk, lv) / smpsubst(denom x, lk, lv)
par x == (r := retractIfCan(x)@Union(R, "failed")) case R => x paren x
convert(x : Factored %) : % == par(unit x) * */[par(f.factor) ^ f.exponent for f in factors x]
retractIfCan(x:%):Union(PR, "failed") == (u := retractIfCan(x)@Union(Fraction PR,"failed")) case "failed" => "failed" retractIfCan(u::Fraction(PR))
retractIfCan(x:%):Union(Fraction PR, "failed") == (n := smpret numer x) case "failed" => "failed" (d := smpret denom x) case "failed" => "failed" n::PR / d::PR
coerce(p : Polynomial Q) : % == map(x +-> x::%, y +-> y::%, p)$PolynomialCategoryLifting(IndexedExponents SY, SY, Q, Polynomial Q, %)
if R has RetractableTo Z then coerce(x : Fraction Z) : % == numer(x)::MP / denom(x)::MP
isMult x == (u := smpIsMult numer x) case "failed" or (v := retractIfCan(denom x)@Union(R, "failed")) case "failed" or (w := retractIfCan(v::R)@Union(Z, "failed")) case "failed" => "failed" r := u::Record(coef : Z, var : K) (q := r.coef exquo w::Z) case "failed" => "failed" [q::Z, r.var]
if R has ConvertibleTo Pattern Z then convert(x : %) : Pattern(Z) == convert(numer x) / convert(denom x)
if R has ConvertibleTo Pattern Float then convert(x : %) : Pattern(Float) == convert(numer x) / convert(denom x)
)abbrev package FS2 FunctionSpaceFunctions2 ++ Lifting of maps to function spaces ++ Author: Manuel Bronstein ++ Date Created: 22 March 1988 ++ Date Last Updated: 3 May 1994 ++ Description: ++ This package allows a mapping R -> S to be lifted to a mapping ++ from a function space over R to a function space over S; FunctionSpaceFunctions2(R, A, S, B) : Exports == Implementation where R, S : Join(Ring, Comparable) A : FunctionSpace R B : FunctionSpace S
K ==> Kernel A P ==> SparseMultivariatePolynomial(R, K)
Exports ==> with map : (R -> S, A) -> B ++ map(f, a) applies f to all the constants in R appearing in \spad{a}.
Implementation ==> add smpmap : (R -> S, P) -> B
smpmap(fn, p) == map(x +-> map(z +-> map(fn, z), x)$ExpressionSpaceFunctions2(A, B), y +-> fn(y)::B, p)$PolynomialCategoryLifting(IndexedExponents K, K, R, P, B)
if R has IntegralDomain then if S has IntegralDomain then map(f, x) == smpmap(f, numer x) / smpmap(f, denom x) else map(f, x) == smpmap(f, numer x) * (recip(smpmap(f, denom x))::B) else map(f, x) == smpmap(f, numer x)
--Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. -- --Redistribution and use in source and binary forms, with or without --modification, are permitted provided that the following conditions are --met: -- -- - Redistributions of source code must retain the above copyright -- notice, this list of conditions and the following disclaimer. -- -- - Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in -- the documentation and/or other materials provided with the -- distribution. -- -- - Neither the name of The Numerical ALgorithms Group Ltd. nor the -- names of its contributors may be used to endorse or promote products -- derived from this software without specific prior written permission. -- --THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS --IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED --TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A --PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER --OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, --EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, --PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR --PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF --LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING --NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS --SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-- SPAD files for the functional world should be compiled in the -- following order: -- -- op kl FSPACE expr funcpkgs
spad
   Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/8583216600871044374-25px002.spad
      using old system compiler.
   ES abbreviates category ExpressionSpace 
------------------------------------------------------------------------
   initializing NRLIB ES for ExpressionSpace 
   compiling into NRLIB ES 
;;; *** |ExpressionSpace| REDEFINED Time: 0.01 SEC.
ES- abbreviates domain ExpressionSpace& ------------------------------------------------------------------------ initializing NRLIB ES- for ExpressionSpace& compiling into NRLIB ES- importing Set Kernel S importing List Kernel S importing List Set Kernel S importing List NonNegativeInteger importing List Symbol compiling exported box : S -> S Time: 0.02 SEC.
compiling exported paren : S -> S Time: 0 SEC.
compiling exported belong? : BasicOperator -> Boolean Time: 0 SEC.
compiling local listk : S -> List Kernel S Time: 0.01 SEC.
compiling exported tower : S -> List Kernel S Time: 0.01 SEC.
compiling local allk : List S -> Set Kernel S Time: 0 SEC.
compiling exported tower : List S -> List Kernel S Time: 0.01 SEC.
compiling exported kernels : List S -> List Kernel S Time: 0 SEC.
compiling exported operators : S -> List BasicOperator Time: 0 SEC.
compiling exported height : S -> NonNegativeInteger Time: 0 SEC.
compiling exported freeOf? : (S,Symbol) -> Boolean Time: 0.01 SEC.
compiling exported distribute : S -> S Time: 0 SEC.
compiling exported box : List S -> S Time: 0 SEC.
compiling exported paren : List S -> S Time: 0 SEC.
compiling exported freeOf? : (S,S) -> Boolean Time: 0 SEC.
compiling exported kernel : (BasicOperator,S) -> S Time: 0.01 SEC.
compiling exported elt : (BasicOperator,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S,S,S) -> S Time: 0.01 SEC.
compiling exported elt : (BasicOperator,S,S,S,S,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S,S,S,S,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S,S,S,S,S,S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,S,S,S,S,S,S,S,S) -> S Time: 0.01 SEC.
compiling exported elt : (BasicOperator,S,S,S,S,S,S,S,S,S) -> S Time: 0 SEC.
compiling exported eval : (S,Symbol,List S -> S) -> S Time: 0.01 SEC.
compiling exported eval : (S,BasicOperator,List S -> S) -> S Time: 0.01 SEC.
compiling exported eval : (S,Symbol,S -> S) -> S Time: 0 SEC.
compiling exported eval : (S,BasicOperator,S -> S) -> S Time: 0.02 SEC.
compiling exported subst : (S,Equation S) -> S Time: 0 SEC.
compiling exported eval : (S,List BasicOperator,List S -> S) -> S Time: 0.01 SEC.
compiling exported eval : (S,List Symbol,List S -> S) -> S Time: 0 SEC.
compiling exported eval : (S,List BasicOperator,List List S -> S) -> S Time: 0.01 SEC.
compiling exported map : (S -> S,Kernel S) -> S Time: 0.01 SEC.
compiling exported operator : BasicOperator -> BasicOperator Time: 0.01 SEC.
compiling exported mainKernel : S -> Union(Kernel S,failed) Time: 0 SEC.
compiling local allKernels : S -> Set Kernel S Time: 0.01 SEC.
compiling exported kernel : (BasicOperator,List S) -> S Time: 0.01 SEC.
compiling local okkernel : (BasicOperator,List S) -> S Time: 0 SEC.
compiling exported elt : (BasicOperator,List S) -> S Time: 0.02 SEC.
compiling exported retract : S -> Kernel S Time: 0 SEC.
compiling exported retractIfCan : S -> Union(Kernel S,failed) Time: 0 SEC.
compiling exported is? : (S,Symbol) -> Boolean Time: 0 SEC.
compiling exported is? : (S,BasicOperator) -> Boolean Time: 0 SEC.
compiling local unwrap : (List Kernel S,S) -> S Time: 0 SEC.
compiling exported distribute : (S,S) -> S Time: 0 SEC.
compiling exported eval : (S,List Equation S) -> S Time: 0.01 SEC.
compiling exported subst : (S,List Equation S) -> S Time: 0 SEC.
compiling local mkKerLists : List Equation S -> Record(lstk: List Kernel S,lstv: List S) Time: 0.01 SEC.
****** Domain: S already in scope augmenting S: (RetractableTo (Integer)) compiling exported even? : S -> Boolean Time: 0 SEC.
compiling exported odd? : S -> Boolean Time: 0 SEC.
compiling local intpred? : (S,Integer -> Boolean) -> Boolean Time: 0 SEC.
(time taken in buildFunctor: 10)
;;; *** |ExpressionSpace&| REDEFINED Time: 0.02 SEC.
Warnings: [1] tower: not known that (Comparable) is of mode (CATEGORY domain (SIGNATURE odd? ((Boolean) S)) (SIGNATURE even? ((Boolean) S)) (SIGNATURE eval (S S (BasicOperator) (Mapping S S))) (SIGNATURE eval (S S (BasicOperator) (Mapping S (List S)))) (SIGNATURE eval (S S (List (BasicOperator)) (List (Mapping S (List S))))) (SIGNATURE eval (S S (List (BasicOperator)) (List (Mapping S S)))) (SIGNATURE eval (S S (Symbol) (Mapping S S))) (SIGNATURE eval (S S (Symbol) (Mapping S (List S)))) (SIGNATURE eval (S S (List (Symbol)) (List (Mapping S (List S))))) (SIGNATURE eval (S S (List (Symbol)) (List (Mapping S S)))) (SIGNATURE freeOf? ((Boolean) S (Symbol))) (SIGNATURE freeOf? ((Boolean) S S)) (SIGNATURE map (S (Mapping S S) (Kernel S))) (SIGNATURE kernel (S (BasicOperator) (List S))) (SIGNATURE kernel (S (BasicOperator) S)) (SIGNATURE is? ((Boolean) S (Symbol))) (SIGNATURE is? ((Boolean) S (BasicOperator))) (SIGNATURE belong? ((Boolean) (BasicOperator))) (SIGNATURE operator ((BasicOperator) (BasicOperator))) (SIGNATURE operators ((List (BasicOperator)) S)) (SIGNATURE tower ((List (Kernel S)) (List S))) (SIGNATURE tower ((List (Kernel S)) S)) (SIGNATURE kernels ((List (Kernel S)) (List S))) (SIGNATURE kernels ((List (Kernel S)) S)) (SIGNATURE mainKernel ((Union (Kernel S) failed) S)) (SIGNATURE height ((NonNegativeInteger) S)) (SIGNATURE distribute (S S S)) (SIGNATURE distribute (S S)) (SIGNATURE paren (S (List S))) (SIGNATURE paren (S S)) (SIGNATURE box (S (List S))) (SIGNATURE box (S S)) (SIGNATURE subst (S S (List (Kernel S)) (List S))) (SIGNATURE subst (S S (List (Equation S)))) (SIGNATURE subst (S S (Equation S))) (SIGNATURE elt (S (BasicOperator) (List S))) (SIGNATURE elt (S (BasicOperator) S S S S S S S S S)) (SIGNATURE elt (S (BasicOperator) S S S S S S S S)) (SIGNATURE elt (S (BasicOperator) S S S S S S S)) (SIGNATURE elt (S (BasicOperator) S S S S S S)) (SIGNATURE elt (S (BasicOperator) S S S S S)) (SIGNATURE elt (S (BasicOperator) S S S S)) (SIGNATURE elt (S (BasicOperator) S S S)) (SIGNATURE elt (S (BasicOperator) S S)) (SIGNATURE elt (S (BasicOperator) S)) (SIGNATURE eval (S S (List S) (List S))) (SIGNATURE eval (S S S S)) (SIGNATURE eval (S S (Equation S))) (SIGNATURE eval (S S (List (Equation S)))) (SIGNATURE eval (S S (List (Kernel S)) (List S))) (SIGNATURE eval (S S (Kernel S) S)) (SIGNATURE retract ((Kernel S) S)) (SIGNATURE retractIfCan ((Union (Kernel S) failed) S))) [2] eval: IN has no value [3] eval: f has no value [4] eval: s has no value [5] map: IN has no value [6] map: x has no value [7] eval: lstk has no value [8] eval: lstv has no value [9] subst: lstk has no value [10] subst: lstv has no value
Cumulative Statistics for Constructor ExpressionSpace& Time: 0.25 seconds
finalizing NRLIB ES- Processing ExpressionSpace& for Browser database: --------constructor--------- --------(elt (% (BasicOperator) %))--------- --------(elt (% (BasicOperator) % %))--------- --------(elt (% (BasicOperator) % % %))--------- --------(elt (% (BasicOperator) % % % %))--------- --------(elt (% (BasicOperator) % % % % %))--------- --------(elt (% (BasicOperator) % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % % %))--------- --------(elt (% (BasicOperator) (List %)))--------- --------(subst (% % (Equation %)))--------- --------(subst (% % (List (Equation %))))--------- --------(subst (% % (List (Kernel %)) (List %)))--------- --------(box (% %))--------- --------(box (% (List %)))--------- --------(paren (% %))--------- --------(paren (% (List %)))--------- --------(distribute (% %))--------- --------(distribute (% % %))--------- --------(height ((NonNegativeInteger) %))--------- --------(mainKernel ((Union (Kernel %) failed) %))--------- --------(kernels ((List (Kernel %)) %))--------- --------(kernels ((List (Kernel %)) (List %)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES.spad-->ExpressionSpace&((kernels ((List (Kernel %)) (List %)))): Missing close parenthesis on first line: kernels(([f1,...,fn]) returns the list of all the top-level --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES.spad-->ExpressionSpace&((kernels ((List (Kernel %)) (List %)))): Missing right pren "kernels(([\\spad{f1},{}...,{}\\spad{fn}]) returns the list of all the top-level kernels appearing in \\spad{f1},{} ...,{} \\spad{fn} but not the ones appearing in the arguments of the top-level kernels." --------(tower ((List (Kernel %)) %))--------- --------(tower ((List (Kernel %)) (List %)))--------- --------(operators ((List (BasicOperator)) %))--------- --------(operator ((BasicOperator) (BasicOperator)))--------- --------(belong? ((Boolean) (BasicOperator)))--------- --------(is? ((Boolean) % (BasicOperator)))--------- --------(is? ((Boolean) % (Symbol)))--------- --------(kernel (% (BasicOperator) %))--------- --------(kernel (% (BasicOperator) (List %)))--------- --------(map (% (Mapping % %) (Kernel %)))--------- --------(freeOf? ((Boolean) % %))--------- --------(freeOf? ((Boolean) % (Symbol)))--------- --------(eval (% % (List (Symbol)) (List (Mapping % %))))--------- --------(eval (% % (List (Symbol)) (List (Mapping % (List %)))))--------- --------(eval (% % (Symbol) (Mapping % (List %))))--------- --------(eval (% % (Symbol) (Mapping % %)))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % %))))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % (List %)))))--------- --------(eval (% % (BasicOperator) (Mapping % (List %))))--------- --------(eval (% % (BasicOperator) (Mapping % %)))--------- --------(minPoly ((SparseUnivariatePolynomial %) (Kernel %)))--------- --------(definingPolynomial (% %))--------- --------(even? ((Boolean) %))--------- --------(odd? ((Boolean) %))--------- ; compiling file "/var/aw/var/LatexWiki/ES-.NRLIB/ES-.lsp" (written 06 MAR 2015 09:45:00 PM):
; /var/aw/var/LatexWiki/ES-.NRLIB/ES-.fasl written ; compilation finished in 0:00:00.138 ------------------------------------------------------------------------ ExpressionSpace& is now explicitly exposed in frame initial ExpressionSpace& will be automatically loaded when needed from /var/aw/var/LatexWiki/ES-.NRLIB/ES- finalizing NRLIB ES Processing ExpressionSpace for Browser database: --------constructor--------- --------(elt (% (BasicOperator) %))--------- --------(elt (% (BasicOperator) % %))--------- --------(elt (% (BasicOperator) % % %))--------- --------(elt (% (BasicOperator) % % % %))--------- --------(elt (% (BasicOperator) % % % % %))--------- --------(elt (% (BasicOperator) % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % % %))--------- --------(elt (% (BasicOperator) (List %)))--------- --------(subst (% % (Equation %)))--------- --------(subst (% % (List (Equation %))))--------- --------(subst (% % (List (Kernel %)) (List %)))--------- --------(box (% %))--------- --------(box (% (List %)))--------- --------(paren (% %))--------- --------(paren (% (List %)))--------- --------(distribute (% %))--------- --------(distribute (% % %))--------- --------(height ((NonNegativeInteger) %))--------- --------(mainKernel ((Union (Kernel %) failed) %))--------- --------(kernels ((List (Kernel %)) %))--------- --------(kernels ((List (Kernel %)) (List %)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES.spad-->ExpressionSpace((kernels ((List (Kernel %)) (List %)))): Missing close parenthesis on first line: kernels(([f1,...,fn]) returns the list of all the top-level --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES.spad-->ExpressionSpace((kernels ((List (Kernel %)) (List %)))): Missing right pren "kernels(([\\spad{f1},{}...,{}\\spad{fn}]) returns the list of all the top-level kernels appearing in \\spad{f1},{} ...,{} \\spad{fn} but not the ones appearing in the arguments of the top-level kernels." --------(tower ((List (Kernel %)) %))--------- --------(tower ((List (Kernel %)) (List %)))--------- --------(operators ((List (BasicOperator)) %))--------- --------(operator ((BasicOperator) (BasicOperator)))--------- --------(belong? ((Boolean) (BasicOperator)))--------- --------(is? ((Boolean) % (BasicOperator)))--------- --------(is? ((Boolean) % (Symbol)))--------- --------(kernel (% (BasicOperator) %))--------- --------(kernel (% (BasicOperator) (List %)))--------- --------(map (% (Mapping % %) (Kernel %)))--------- --------(freeOf? ((Boolean) % %))--------- --------(freeOf? ((Boolean) % (Symbol)))--------- --------(eval (% % (List (Symbol)) (List (Mapping % %))))--------- --------(eval (% % (List (Symbol)) (List (Mapping % (List %)))))--------- --------(eval (% % (Symbol) (Mapping % (List %))))--------- --------(eval (% % (Symbol) (Mapping % %)))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % %))))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % (List %)))))--------- --------(eval (% % (BasicOperator) (Mapping % (List %))))--------- --------(eval (% % (BasicOperator) (Mapping % %)))--------- --------(minPoly ((SparseUnivariatePolynomial %) (Kernel %)))--------- --------(definingPolynomial (% %))--------- --------(even? ((Boolean) %))--------- --------(odd? ((Boolean) %))--------- ; compiling file "/var/aw/var/LatexWiki/ES.NRLIB/ES.lsp" (written 06 MAR 2015 09:45:01 PM):
; /var/aw/var/LatexWiki/ES.NRLIB/ES.fasl written ; compilation finished in 0:00:00.005 ------------------------------------------------------------------------ ExpressionSpace is now explicitly exposed in frame initial ExpressionSpace will be automatically loaded when needed from /var/aw/var/LatexWiki/ES.NRLIB/ES
ES1 abbreviates package ExpressionSpaceFunctions1 ------------------------------------------------------------------------ initializing NRLIB ES1 for ExpressionSpaceFunctions1 compiling into NRLIB ES1 compiling exported map : (F -> S,Symbol,Kernel F) -> S Time: 0.01 SEC.
(time taken in buildFunctor: 0)
;;; *** |ExpressionSpaceFunctions1| REDEFINED
;;; *** |ExpressionSpaceFunctions1| REDEFINED Time: 0 SEC.
Cumulative Statistics for Constructor ExpressionSpaceFunctions1 Time: 0.01 seconds
finalizing NRLIB ES1 Processing ExpressionSpaceFunctions1 for Browser database: --------constructor--------- --------(elt (% (BasicOperator) %))--------- --------(elt (% (BasicOperator) % %))--------- --------(elt (% (BasicOperator) % % %))--------- --------(elt (% (BasicOperator) % % % %))--------- --------(elt (% (BasicOperator) % % % % %))--------- --------(elt (% (BasicOperator) % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % % %))--------- --------(elt (% (BasicOperator) (List %)))--------- --------(subst (% % (Equation %)))--------- --------(subst (% % (List (Equation %))))--------- --------(subst (% % (List (Kernel %)) (List %)))--------- --------(box (% %))--------- --------(box (% (List %)))--------- --------(paren (% %))--------- --------(paren (% (List %)))--------- --------(distribute (% %))--------- --------(distribute (% % %))--------- --------(height ((NonNegativeInteger) %))--------- --------(mainKernel ((Union (Kernel %) failed) %))--------- --------(kernels ((List (Kernel %)) %))--------- --------(kernels ((List (Kernel %)) (List %)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES1.spad-->ExpressionSpaceFunctions1((kernels ((List (Kernel %)) (List %)))): Missing close parenthesis on first line: kernels(([f1,...,fn]) returns the list of all the top-level --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES1.spad-->ExpressionSpaceFunctions1((kernels ((List (Kernel %)) (List %)))): Missing right pren "kernels(([\\spad{f1},{}...,{}\\spad{fn}]) returns the list of all the top-level kernels appearing in \\spad{f1},{} ...,{} \\spad{fn} but not the ones appearing in the arguments of the top-level kernels." --------(tower ((List (Kernel %)) %))--------- --------(tower ((List (Kernel %)) (List %)))--------- --------(operators ((List (BasicOperator)) %))--------- --------(operator ((BasicOperator) (BasicOperator)))--------- --------(belong? ((Boolean) (BasicOperator)))--------- --------(is? ((Boolean) % (BasicOperator)))--------- --------(is? ((Boolean) % (Symbol)))--------- --------(kernel (% (BasicOperator) %))--------- --------(kernel (% (BasicOperator) (List %)))--------- --------(map (% (Mapping % %) (Kernel %)))--------- --------(freeOf? ((Boolean) % %))--------- --------(freeOf? ((Boolean) % (Symbol)))--------- --------(eval (% % (List (Symbol)) (List (Mapping % %))))--------- --------(eval (% % (List (Symbol)) (List (Mapping % (List %)))))--------- --------(eval (% % (Symbol) (Mapping % (List %))))--------- --------(eval (% % (Symbol) (Mapping % %)))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % %))))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % (List %)))))--------- --------(eval (% % (BasicOperator) (Mapping % (List %))))--------- --------(eval (% % (BasicOperator) (Mapping % %)))--------- --------(minPoly ((SparseUnivariatePolynomial %) (Kernel %)))--------- --------(definingPolynomial (% %))--------- --------(even? ((Boolean) %))--------- --------(odd? ((Boolean) %))--------- --------constructor--------- --------(map (S (Mapping S F) (Symbol) (Kernel F)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES1.spad-->ExpressionSpaceFunctions1(): Spurious comments: This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel. ; compiling file "/var/aw/var/LatexWiki/ES1.NRLIB/ES1.lsp" (written 06 MAR 2015 09:45:01 PM):
; /var/aw/var/LatexWiki/ES1.NRLIB/ES1.fasl written ; compilation finished in 0:00:00.013 ------------------------------------------------------------------------ ExpressionSpaceFunctions1 is now explicitly exposed in frame initial
ExpressionSpaceFunctions1 will be automatically loaded when needed from /var/aw/var/LatexWiki/ES1.NRLIB/ES1
ES2 abbreviates package ExpressionSpaceFunctions2 ------------------------------------------------------------------------ initializing NRLIB ES2 for ExpressionSpaceFunctions2 compiling into NRLIB ES2 compiling exported map : (E -> F,Kernel E) -> F Time: 0.01 SEC.
(time taken in buildFunctor: 0)
;;; *** |ExpressionSpaceFunctions2| REDEFINED
;;; *** |ExpressionSpaceFunctions2| REDEFINED Time: 0 SEC.
Warnings: [1] map: IN has no value [2] map: x has no value
Cumulative Statistics for Constructor ExpressionSpaceFunctions2 Time: 0.01 seconds
finalizing NRLIB ES2 Processing ExpressionSpaceFunctions2 for Browser database: --------constructor--------- --------(elt (% (BasicOperator) %))--------- --------(elt (% (BasicOperator) % %))--------- --------(elt (% (BasicOperator) % % %))--------- --------(elt (% (BasicOperator) % % % %))--------- --------(elt (% (BasicOperator) % % % % %))--------- --------(elt (% (BasicOperator) % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % %))--------- --------(elt (% (BasicOperator) % % % % % % % % %))--------- --------(elt (% (BasicOperator) (List %)))--------- --------(subst (% % (Equation %)))--------- --------(subst (% % (List (Equation %))))--------- --------(subst (% % (List (Kernel %)) (List %)))--------- --------(box (% %))--------- --------(box (% (List %)))--------- --------(paren (% %))--------- --------(paren (% (List %)))--------- --------(distribute (% %))--------- --------(distribute (% % %))--------- --------(height ((NonNegativeInteger) %))--------- --------(mainKernel ((Union (Kernel %) failed) %))--------- --------(kernels ((List (Kernel %)) %))--------- --------(kernels ((List (Kernel %)) (List %)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES2.spad-->ExpressionSpaceFunctions2((kernels ((List (Kernel %)) (List %)))): Missing close parenthesis on first line: kernels(([f1,...,fn]) returns the list of all the top-level --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES2.spad-->ExpressionSpaceFunctions2((kernels ((List (Kernel %)) (List %)))): Missing right pren "kernels(([\\spad{f1},{}...,{}\\spad{fn}]) returns the list of all the top-level kernels appearing in \\spad{f1},{} ...,{} \\spad{fn} but not the ones appearing in the arguments of the top-level kernels." --------(tower ((List (Kernel %)) %))--------- --------(tower ((List (Kernel %)) (List %)))--------- --------(operators ((List (BasicOperator)) %))--------- --------(operator ((BasicOperator) (BasicOperator)))--------- --------(belong? ((Boolean) (BasicOperator)))--------- --------(is? ((Boolean) % (BasicOperator)))--------- --------(is? ((Boolean) % (Symbol)))--------- --------(kernel (% (BasicOperator) %))--------- --------(kernel (% (BasicOperator) (List %)))--------- --------(map (% (Mapping % %) (Kernel %)))--------- --------(freeOf? ((Boolean) % %))--------- --------(freeOf? ((Boolean) % (Symbol)))--------- --------(eval (% % (List (Symbol)) (List (Mapping % %))))--------- --------(eval (% % (List (Symbol)) (List (Mapping % (List %)))))--------- --------(eval (% % (Symbol) (Mapping % (List %))))--------- --------(eval (% % (Symbol) (Mapping % %)))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % %))))--------- --------(eval (% % (List (BasicOperator)) (List (Mapping % (List %)))))--------- --------(eval (% % (BasicOperator) (Mapping % (List %))))--------- --------(eval (% % (BasicOperator) (Mapping % %)))--------- --------(minPoly ((SparseUnivariatePolynomial %) (Kernel %)))--------- --------(definingPolynomial (% %))--------- --------(even? ((Boolean) %))--------- --------(odd? ((Boolean) %))--------- --------constructor--------- --------(map (S (Mapping S F) (Symbol) (Kernel F)))--------- --------constructor--------- --------(map (F (Mapping F E) (Kernel E)))--------- --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES2.spad-->ExpressionSpaceFunctions2(): Spurious comments: This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel. --->/usr/local/lib/fricas/target/x86_64-unknown-linux/../../src/algebra/ES2.spad-->ExpressionSpaceFunctions2(): Spurious comments: This package allows a mapping \spad{E} \spad{->} \spad{F} to be lifted to a kernel over \spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \spad{F}; Do not use this package with \spad{E} = \spad{F},{} since this may drop some properties of the operators. ; compiling file "/var/aw/var/LatexWiki/ES2.NRLIB/ES2.lsp" (written 06 MAR 2015 09:45:01 PM):
; /var/aw/var/LatexWiki/ES2.NRLIB/ES2.fasl written ; compilation finished in 0:00:00.012 ------------------------------------------------------------------------ ExpressionSpaceFunctions2 is now explicitly exposed in frame initial
ExpressionSpaceFunctions2 will be automatically loaded when needed from /var/aw/var/LatexWiki/ES2.NRLIB/ES2
FS abbreviates category FunctionSpace ------------------------------------------------------------------------ initializing NRLIB FS for FunctionSpace compiling into NRLIB FS
;;; *** |FunctionSpace| REDEFINED Time: 0.01 SEC.
FS- abbreviates domain FunctionSpace& ------------------------------------------------------------------------ initializing NRLIB FS- for FunctionSpace& compiling into NRLIB FS- importing BasicOperatorFunctions1 S importing Kernel S importing Integer importing NonNegativeInteger importing String importing List OutputForm importing List S compiling exported ground? : S -> Boolean Time: 0.04 SEC.
compiling exported ground : S -> R Time: 0 SEC.
compiling exported coerce : Symbol -> S Time: 0 SEC.
compiling exported retract : S -> Symbol Time: 0 SEC.
compiling exported applyQuote : (Symbol,S) -> S Time: 0 SEC.
compiling exported applyQuote : (Symbol,S,S) -> S Time: 0 SEC.
compiling exported applyQuote : (Symbol,S,S,S) -> S Time: 0 SEC.
compiling exported applyQuote : (Symbol,S,S,S,S) -> S Time: 0.01 SEC.
compiling exported applyQuote : (Symbol,List S) -> S Time: 0 SEC.
compiling exported belong? : BasicOperator -> Boolean Time: 0 SEC.
compiling local subs : (S -> S,Kernel S) -> S Time: 0 SEC.
compiling exported operator : BasicOperator -> BasicOperator Time: 0 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (InputForm)) processing macro definition INP ==> InputForm importing MakeUnaryCompiledFunction(S,S,S) compiling local differentiand : List S -> S Time: 0 SEC.
compiling local pint : List InputForm -> InputForm Time: 0.05 SEC.
compiling local indiff : List S -> InputForm Time: 0.03 SEC.
compiling exported eval : (S,Symbol) -> S Time: 0 SEC.
compiling exported eval : (S,BasicOperator,S,Symbol) -> S Time: 0 SEC.
compiling exported eval : (S,List BasicOperator,List S,Symbol) -> S Time: 0.01 SEC.
compiling exported variables : List S -> List Symbol Time: 0.01 SEC.
compiling exported variables : S -> List Symbol Time: 0 SEC.
compiling exported retractIfCan : S -> Union(Symbol,failed) Time: 0 SEC.
****** Domain: R already in scope augmenting R: (Ring) importing UserDefinedPartialOrdering Symbol importing SparseMultivariatePolynomial(R,Kernel S) importing SparseUnivariatePolynomial S compiling exported characteristic : () -> NonNegativeInteger Time: 0 SEC.
compiling exported coerce : Kernel S -> S Time: 0.01 SEC.
compiling local symsub : (Symbol,Integer) -> Symbol Time: 0 SEC.
compiling exported numerator : S -> S Time: 0 SEC.
compiling exported eval : (S,Symbol,NonNegativeInteger,S -> S) -> S Time: 0.01 SEC.
compiling exported eval : (S,Symbol,NonNegativeInteger,List S -> S) -> S Time: 0.01 SEC.
compiling exported eval : (S,List Symbol,List List S -> S) -> S Time: 0.01 SEC.
compiling exported elt : (BasicOperator,List S) -> S Time: 0.01 SEC.
compiling exported eval : (S,List Symbol,List NonNegativeInteger,List S -> S) -> S Time: 0.01 SEC.
compiling local smprep : (List Symbol,List NonNegativeInteger,List List S -> S,SparseMultivariatePolynomial(R,Kernel S)) -> S Time: 0.20 SEC.
compiling local dispdiff : List S -> Record(name: OutputForm,sub: OutputForm,arg: List OutputForm,orig_op: BasicOperator,level: NonNegativeInteger) Time: 0.05 SEC.
compiling local ddiff : List S -> OutputForm Time: 0.02 SEC.
processing macro definition Dec_Rec ==> Record(orig_k: Kernel S,sub: List Integer,oarg: List S,arg: List S,dummies: List S) compiling local encode_diff : (Kernel S,List Integer,List S,List S) -> S Time: 0.01 SEC.
compiling local insert_sub : (List Integer,Integer) -> List Integer Time: 0.01 SEC.
compiling local pos_diff : (List S,Record(orig_k: Kernel S,sub: List Integer,oarg: List S,arg: List S,dummies: List S),Integer) -> S Time: 0.01 SEC.
compiling local diffdiff : (List S,Symbol) -> S Time: 0.02 SEC.
compiling local dfeval : (List S,Kernel S) -> S Time: 0 SEC.
compiling local diffEval : List S -> S Time: 0.14 SEC.
compiling local diffArg : (List S,BasicOperator,NonNegativeInteger) -> List S Time: 0.01 SEC.
compiling local opderiv : (BasicOperator,NonNegativeInteger) -> List List S -> S Time: 0.16 SEC.
compiling local kderiv : Kernel S -> List S Time: 0.01 SEC.
compiling local smpderiv : (SparseMultivariatePolynomial(R,Kernel S),Symbol) -> S Time: 0.32 SEC.
compiling exported coerce : Polynomial R -> S Time: 0.01 SEC.
compiling local worse? : (Kernel S,Kernel S) -> Boolean Time: 0 SEC.
compiling local bestKernel : List Kernel S -> Kernel S Time: 0.01 SEC.
compiling local smp2O : SparseMultivariatePolynomial(R,Kernel S) -> OutputForm Time: 0 SEC.
compiling local smpsubst : (SparseMultivariatePolynomial(R,Kernel S),List Kernel S,List S) -> S Time: 0.01 SEC.
compiling local smpeval : (SparseMultivariatePolynomial(R,Kernel S),List Kernel S,List S) -> S Time: 0.01 SEC.
compiling local notfound : (Kernel S -> S,List Kernel S) -> Kernel S -> S Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (InputForm)) compiling local pushunq : (List Symbol,List S) -> List S Time: 0.01 SEC.
compiling local kunq : (Kernel S,List Symbol,Boolean) -> S Time: 0.18 SEC.
compiling local smpunq : (SparseMultivariatePolynomial(R,Kernel S),List Symbol,Boolean) -> S Time: 0.01 SEC.
compiling local smpret : SparseMultivariatePolynomial(R,Kernel S) -> Union(Polynomial R,failed) Time: 0.01 SEC.
compiling exported isExpt : (S,BasicOperator) -> Union(Record(var: Kernel S,exponent: Integer),failed) Time: 0.01 SEC.
compiling exported isExpt : (S,Symbol) -> Union(Record(var: Kernel S,exponent: Integer),failed) Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) compiling local smpIsMult : SparseMultivariatePolynomial(R,Kernel S) -> Union(Record(coef: Integer,var: Kernel S),failed) Time: 0.02 SEC.
compiling local debugA : (List S,List S,Boolean) -> Boolean FS-;debugA is replaced by t Time: 0 SEC.
compiling local decode_diff : List S -> Record(orig_k: Kernel S,sub: List Integer,oarg: List S,arg: List S,dummies: List S) Time: 0.02 SEC.
compiling local equaldiff : (Kernel S,Kernel S) -> Boolean Time: 0.06 SEC.
****** Domain: R already in scope augmenting R: (IntegralDomain) compiling local kerderiv : (Kernel S,Symbol) -> S Time: 0.02 SEC.
compiling exported mainKernel : S -> Union(Kernel S,failed) Time: 0 SEC.
compiling exported kernels : S -> List Kernel S Time: 0 SEC.
compiling exported retract : S -> R Time: 0.01 SEC.
compiling exported retract : S -> Polynomial R Time: 0 SEC.
compiling exported retractIfCan : S -> Union(R,failed) Time: 0 SEC.
compiling exported retractIfCan : S -> Union(Polynomial R,failed) Time: 0 SEC.
compiling exported eval : (S,List Kernel S,List S) -> S Time: 0.01 SEC.
compiling exported subst : (S,List Kernel S,List S) -> S Time: 0 SEC.
compiling exported differentiate : (S,Symbol) -> S Time: 0 SEC.
compiling exported coerce : S -> OutputForm Time: 0 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (InputForm)) compiling exported eval : (S,List Symbol) -> S Time: 0 SEC.
compiling exported eval : S -> S Time: 0.01 SEC.
compiling exported eval : (S,List Symbol,List NonNegativeInteger,List List S -> S) -> S Time: 0 SEC.
compiling exported isPlus : S -> Union(List S,failed) Time: 0.01 SEC.
compiling exported isTimes : S -> Union(List S,failed) Time: 0 SEC.
compiling exported isExpt : S -> Union(Record(var: Kernel S,exponent: Integer),failed) Time: 0 SEC.
compiling exported isPower : S -> Union(Record(val: S,exponent: Integer),failed) Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (Pattern (Integer))) compiling exported convert : S -> Pattern Integer Time: 0 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (Pattern (Float))) compiling exported convert : S -> Pattern Float Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) compiling exported isMult : S -> Union(Record(coef: Integer,var: Kernel S),failed) Time: 0 SEC.
****** Domain: R already in scope augmenting R: (CommutativeRing) compiling exported * : (R,S) -> S Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (IntegralDomain) importing Fraction Polynomial R importing SparseMultivariatePolynomial(R,Kernel S) compiling exported mainKernel : S -> Union(Kernel S,failed) Time: 0 SEC.
compiling exported kernels : S -> List Kernel S Time: 0.01 SEC.
compiling exported univariate : (S,Kernel S) -> Fraction SparseUnivariatePolynomial S Time: 0 SEC.
compiling exported isPlus : S -> Union(List S,failed) Time: 0 SEC.
compiling exported isTimes : S -> Union(List S,failed) Time: 0.01 SEC.
compiling exported isExpt : S -> Union(Record(var: Kernel S,exponent: Integer),failed) Time: 0 SEC.
compiling exported isPower : S -> Union(Record(val: S,exponent: Integer),failed) Time: 0 SEC.
compiling exported denominator : S -> S Time: 0 SEC.
compiling exported coerce : Fraction R -> S Time: 0 SEC.
compiling exported coerce : Fraction Polynomial R -> S Time: 0.01 SEC.
compiling exported coerce : Fraction Polynomial Fraction R -> S Time: 0.01 SEC.
compiling exported retract : S -> Polynomial R Time: 0 SEC.
compiling exported retract : S -> Fraction Polynomial R Time: 0.01 SEC.
compiling exported retract : S -> R Time: 0.02 SEC.
compiling local alg_ker_set : List S -> List Kernel S Time: 0.01 SEC.
compiling exported algtower : List S -> List Kernel S Time: 0.01 SEC.
compiling exported algtower : S -> List Kernel S Time: 0 SEC.
compiling exported coerce : S -> OutputForm Time: 0.01 SEC.
compiling exported retractIfCan : S -> Union(R,failed) Time: 0 SEC.
compiling exported eval : (S,List Symbol) -> S Time: 0.01 SEC.
****** Domain: R already in scope augmenting R: (ConvertibleTo (InputForm)) compiling exported eval : S -> S Time: 0 SEC.
compiling exported eval : (S,List Symbol,List NonNegativeInteger,List List S -> S) -> S Time: 0.01 SEC.
compiling local opderiv' : (BasicOperator,NonNegativeInteger) -> List List S -> S ****** comp fails at level 8 with expression: ****** error in function opderiv'
(IF (= |n| 1) (SEQ (LET |g| (|::| (|symsub| |gendiff| |n|) S)) (|exit| 1 (|construct| (+-> |x| ((|Sel| (|FunctionalSpecialFunction| R S) |conjugate|) (|kernel| |opdiff| (|construct| (|kernel| (|conjugate| | << op >> |) |g|) |g| (|first| |x|)))))))) (COLLECT (STEP |i| 1 1 |n|) (+-> |x| ((|Sel| (|FunctionalSpecialFunction| R S) |conjugate|) (|kernel| |opdiff| (|diffArg| |x| (|conjugate| |op|) |i|)))))) ****** level 8 ****** $x:= op $m:= S $f:= ((((|x| #) (|g| #) (|n| # #) (|op| # #) ...) ((|alg_ker_set| #) (|par| #) (* #) (+ #) ...)))
>> Apparent user error: compLambda: signature needed (+-> x ((Sel (FunctionalSpecialFunction R S) conjugate) (kernel opdiff (construct (kernel (conjugate op) g) g (first x)))))