Distributions
We represent distributions as the real part of a complex function
in the limit where the imaginary part goes to 0.
Ref.
Use new definition of derivative of abs(x) from SandBoxFunctionalSpecialFunction?
fricas
)lib FSPECX
FunctionalSpecialFunction is now explicitly exposed in frame initial
FunctionalSpecialFunction will be automatically loaded when needed
from /var/aw/var/LatexWiki/FSPECX.NRLIB/FSPECX
abs2sqrt := rule abs(a+%i*b)==sqrt(a^2+b^2)
Type: RewriteRule
?(Integer,
Complex(Integer),
Expression(Complex(Integer)))
Derivatives
fricas
%signum:=differentiate(abs(%z),%z)
Type: Expression(Integer)
fricas
%diracDelta:=differentiate(%signum,%z)/2
Type: Expression(Integer)
Consider the real part of a complex function of for real and with .
fricas
realSignum:=abs2sqrt(eval(%signum,%z=a+%i*b)+eval(%signum,%z=a-%i*b))/2
Type: Expression(Complex(Integer))
fricas
signum(x)==eval(realSignum,a=x)
Type: Void
fricas
signum(x)
fricas
Compiling function signum with type Variable(x) -> Expression(
Complex(Integer))
Type: Expression(Complex(Integer))
fricas
--
realDirac:=abs2sqrt(eval(%diracDelta,%z=a+%i*b)+eval(%diracDelta, %z=a-%i*b))/4
Type: Expression(Complex(Integer))
fricas
diracDelta(x)==eval(realDirac,a=x)
Type: Void
fricas
diracDelta(x)
fricas
Compiling function diracDelta with type Variable(x) -> Expression(
Complex(Integer))
Type: Expression(Complex(Integer))
Properties
fricas
limit( signum(1) ,b=0)
fricas
Compiling function signum with type PositiveInteger -> Expression(
Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( signum(-1) ,b=0)
fricas
Compiling function signum with type Integer -> Expression(Complex(
Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( signum(0) ,b=0)
fricas
Compiling function signum with type NonNegativeInteger -> Expression
(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( signum(x)^2 ,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( diracDelta(1) ,b=0)
fricas
Compiling function diracDelta with type PositiveInteger ->
Expression(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( diracDelta(-1) ,b=0)
fricas
Compiling function diracDelta with type Integer -> Expression(
Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( diracDelta(0) ,b=0)
fricas
Compiling function diracDelta with type NonNegativeInteger ->
Expression(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
test( diracDelta(x)=diracDelta(-x) )
fricas
Compiling function diracDelta with type Polynomial(Integer) ->
Expression(Complex(Integer))
Type: Boolean
fricas
limit( diracDelta(x)^2 ,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
integrate(diracDelta(x),x=%minusInfinity..%plusInfinity,"noPole")
Type: Union(f1: OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
f(x)==x+c
Type: Void
fricas
integrate(f(x)*diracDelta(x),x=%minusInfinity..%plusInfinity,"noPole")
fricas
Compiling function f with type Variable(x) -> Polynomial(Integer)
Type: Union(f1: OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
integrate(f(x)*diracDelta(x-t),x=%minusInfinity..%plusInfinity,"noPole")
Type: Union(f1: OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
integrate(diracDelta(2*x),x=%minusInfinity..%plusInfinity,"noPole")
Type: Union(f1: OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
--
limit( signum(x)*diracDelta(x) ,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
diracDelta(x^2)
Type: Expression(Complex(Integer))
fricas
limit(%,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
Heaviside
fricas
realHeaviside:=integrate(diracDelta(a),a)::Expression Complex Integer
fricas
Compiling function diracDelta with type Variable(a) -> Expression(
Complex(Integer))
Type: Expression(Complex(Integer))
fricas
heavisideStep(x)==eval(realHeaviside,a=x)
Type: Void
fricas
limit( heavisideStep(1), b=0)
fricas
Compiling function heavisideStep with type PositiveInteger ->
Expression(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( heavisideStep(-1) ,b=0)
fricas
Compiling function heavisideStep with type Integer -> Expression(
Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( heavisideStep(0) ,b=0)
fricas
Compiling function heavisideStep with type NonNegativeInteger ->
Expression(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( heavisideStep(x), x=0)
fricas
Compiling function heavisideStep with type Variable(x) -> Expression
(Complex(Integer))
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( heavisideStep(x) ,x=%plusInfinity)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
limit( heavisideStep(x) ,x=%minusInfinity)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
test(simplify( (1+signum(x))/2 - heavisideStep(x) ) = 0)
Type: Boolean
fricas
test(limit( integrate(heavisideStep(t),t=%minusInfinity..x, "noPole") - x*heavisideStep(x), b=0) =0)
fricas
Compiling function heavisideStep with type Variable(t) -> Expression
(Complex(Integer))
Type: Boolean
Problems?
fricas
-- expected 1/abs(alpha)
integrate(diracDelta(alpha*x),x=%minusInfinity..%plusInfinity,"noPole")
Type: Union(f1: OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
-- expected x*abs(x)/2
integrate(abs(x),x)
Type: Union(Expression(Integer),...)
fricas
eval(abs2sqrt(abs(a+%i*b)/2+abs(a-%i*b)/2),a=x)
Type: Expression(Complex(Integer))
fricas
integrate(%,x)
Type: Union(Expression(Complex(Integer)),...)
fricas
limit(%,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
-- expected abs(x)
integrate(%signum,%z)
Type: Union(Expression(Integer),...)
fricas
integrate(signum(x),x)
Type: Union(Expression(Complex(Integer)),...)
fricas
limit(%,b=0)
Type: Union(OrderedCompletion
?(Expression(Complex(Integer))),
...)
fricas
-- expected signum(x)/2
integrate(%diracDelta,%z)
Type: Union(Expression(Integer),...)
fricas
integrate(diracDelta(x^2+y^2), x=%minusInfinity..%plusInfinity, "noPole")
Type: Union(fail: failed,...)
Representing diracDelta as a series of bump functions
fricas
)lib GDRAW
GnuDraw is now explicitly exposed in frame initial
GnuDraw will be automatically loaded when needed from
/var/aw/var/LatexWiki/GDRAW.NRLIB/GDRAW
X:=[(x/10)::DFLOAT for x in -100..100 by 1];
fricas
Y:=[eval(diracDelta(x),b=1.0)::DFLOAT for x in X];
fricas
Compiling function diracDelta with type DoubleFloat -> Expression(
Complex(DoubleFloat))
fricas
gnuDraw(X,Y,"SandBoxDiracDelta1.dat")
Graph data being transmitted to the viewport manager...
FriCAS2D data being transmitted to the viewport manager...
Type: Void