Differential Equations fricas (1) -> y := operator y
Type: BasicOperator?
fricas deq := D(y(x),
Type: Equation(Expression(Integer))
fricas solve(deq,
Type: Union(Expression(Integer),
fricas deq := D(y(x),
Type: Equation(Expression(Integer))
fricas solve(deq,
Type: Union(Record(particular: Expression(Integer),
test solution fricas deq := D(y(x),
Type: Equation(Expression(Integer))
fricas solve(deq, Linear non homog equation fricas deq := D(y(x),
Type: Equation(Expression(Integer))
fricas solve(deq,
Type: Union(Expression(Integer),
fricas z := operator z
Type: BasicOperator?
fricas deq2 := D(z(x),
Type: Equation(Expression(Integer))
fricas solve(deq2,
Type: Union(Record(particular: Expression(Integer),
|


![\label{eq11}\begin{array}{@{}l}
\displaystyle
\left[{particular ={\int^{
\displaystyle
x}-{{\frac{{e}^{y \left({\%D}\right)}}{{d \ {y \left({\%D}\right)}}- 1}}\ {d \%D}}}}, \: \right.
\
\
\displaystyle
\left.{basis ={\left[ 1 \right]}}\right]
\label{eq11}\begin{array}{@{}l}
\displaystyle
\left[{particular ={\int^{
\displaystyle
x}-{{\frac{{e}^{y \left({\%D}\right)}}{{d \ {y \left({\%D}\right)}}- 1}}\ {d \%D}}}}, \: \right.
\
\
\displaystyle
\left.{basis ={\left[ 1 \right]}}\right]](images/225904514637647665-16.0px.png)