login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBoxComplexManifold revision 7 of 7

1 2 3 4 5 6 7
Editor: test1
Time: 2013/04/25 19:29:47 GMT+0
Note:

changed:
-ComplexManifold(R:Join(Field,RadicalCategory,TranscendentalFunctionCategory,OrderedSet)): Join(RadicalCategory,DirectProductCategory(2,R)) with
ComplexManifold(R:Join(Field, RadicalCategory, TranscendentalFunctionCategory, Comparable)
               ) : Join(RadicalCategory, DirectProductCategory(2,R)) with

changed:
-  == DirectProduct(2,R) add
  == DirectProduct(2, R) add

changed:
-    Rep == DirectProduct(2,R)
    Rep ==> DirectProduct(2,R)
    per x ==> (x@Rep) pretend %
    rep x ==> (x@%) pretend Rep


changed:
-      real(x)<0 and imag(x)=0 => pi()
      -- does not work since we have no order
      -- real(x)<0 and imag(x)=0 => pi()

added:
)set break resume

Complex domain constructor done differently.

DirectProduct? lifts many operations from the underlying domain automatically.

Complex values are represented as conjugate pairs.

fricas
(1) -> <spad>
fricas
)abbrev domain CM ComplexManifold
ComplexManifold(R:Join(Field, RadicalCategory, TranscendentalFunctionCategory, Comparable)
               ) : Join(RadicalCategory, DirectProductCategory(2,R)) with
    imaginary: () -> %
    real: % -> R
    imag: % -> R
    conj: % -> %
    norm: % -> R
    arg:  % -> R
    coerce: % -> Complex R
  == DirectProduct(2, R) add
    -- represent as conjugate pair
    Rep ==> DirectProduct(2,R)
    per x ==> (x@Rep) pretend %
    rep x ==> (x@%) pretend Rep
pair(x:R,y:R):Rep == directProduct vector [x,y] dup(x:R):Rep == directProduct vector [x,x] import List R
imaginary():% == per pair(1,-1) real(x:%):R == (rep(x).1 + rep(x).2)/(2::R) imag(x:%):R == (rep(x).1 - rep(x).2)/(2::R) -- just swap conj(x:%):% == per pair(rep(x).2,rep(x).1) -- multiplication is interesting (x:% * y:%):% == per pair( _ real(x)*rep(y).1 + imag(x)*rep(y).2, _ real(x)*rep(y).2 - imag(x)*rep(y).1) norm(x:%):R == retract(x*conj(x)) iabs(x:%):R == sqrt norm x abs(x:%):% == per dup iabs x arg(x:%):R == -- does not work since we have no order -- real(x)<0 and imag(x)=0 => pi() (2::R)*atan(imag(x)/(iabs(x)+real(x))) sqrt(x:%):% == per( sqrt(iabs(x))*pair( _ cos(arg(x)/(2::R)) + sin(arg(x)/(2::R)), _ cos(arg(x)/(2::R)) - sin(arg(x)/(2::R)) ) )
coerce(x:%):OutputForm == complex(real x,imag x)$Complex(R)::OutputForm coerce(x:%):Complex(R) == complex(real x,imag x)</spad>
fricas
Compiling FriCAS source code from file 
      /var/lib/zope2.10/instance/axiom-wiki/var/LatexWiki/5781501376748542802-25px001.spad
      using old system compiler.
   CM abbreviates domain ComplexManifold 
------------------------------------------------------------------------
   initializing NRLIB CM for ComplexManifold 
   compiling into NRLIB CM 
****** Domain: R already in scope
****** Domain: R already in scope
****** Domain: R already in scope
   processing macro definition Rep ==> DirectProduct(2,R) 
   processing macro definition per x ==> pretend(@(x,DirectProduct(2,R)),%) 
   processing macro definition rep x ==> pretend(@(x,%),DirectProduct(2,R)) 
   compiling local pair : (R,R) -> DirectProduct(2,R)
Time: 0.03 SEC.
compiling local dup : R -> DirectProduct(2,R) Time: 0 SEC.
importing List R compiling exported imaginary : () -> % Time: 0 SEC.
compiling exported real : % -> R Time: 0 SEC.
compiling exported imag : % -> R Time: 0 SEC.
compiling exported conj : % -> % Time: 0 SEC.
compiling exported * : (%,%) -> % Time: 0 SEC.
compiling exported norm : % -> R Time: 0 SEC.
compiling local iabs : % -> R Time: 0 SEC.
compiling local abs : % -> % Time: 0 SEC.
compiling exported arg : % -> R Time: 0 SEC.
compiling exported sqrt : % -> % Time: 0 SEC.
compiling exported coerce : % -> OutputForm Time: 0 SEC.
compiling exported coerce : % -> Complex R Time: 0 SEC.
****** Domain: R already in scope augmenting R: (OrderedSet) ****** Domain: R already in scope augmenting R: (DifferentialRing) ****** Domain: R already in scope augmenting R: (Evalable R) ****** Domain: R already in scope augmenting R: (LinearlyExplicitOver (Integer)) ****** Domain: R already in scope augmenting R: (PartialDifferentialRing (Symbol)) ****** Domain: R already in scope augmenting R: (RetractableTo (Fraction (Integer))) ****** Domain: R already in scope augmenting R: (RetractableTo (Integer)) ****** Domain: % already in scope augmenting %: (shallowlyMutable) ****** Domain: R already in scope augmenting R: (Finite) ****** Domain: R already in scope augmenting R: (OrderedAbelianMonoidSup) ****** Domain: R already in scope augmenting R: (OrderedSet) (time taken in buildFunctor: 81385)
;;; *** |ComplexManifold| REDEFINED
;;; *** |ComplexManifold| REDEFINED Time: 0.10 SEC.
Cumulative Statistics for Constructor ComplexManifold Time: 0.15 seconds
--------------non extending category---------------------- .. ComplexManifold(#1) of cat (|Join| (|RadicalCategory|) (|DirectProductCategory| 2 |#1|) (CATEGORY |domain| (SIGNATURE |imaginary| (%)) (SIGNATURE |real| (|#1| %)) (SIGNATURE |imag| (|#1| %)) (SIGNATURE |conj| (% %)) (SIGNATURE |norm| (|#1| %)) (SIGNATURE |arg| (|#1| %)) (SIGNATURE |coerce| ((|Complex| |#1|) %)))) has no (|DirectProductCategory| NIL |#1|) finalizing NRLIB CM Processing ComplexManifold for Browser database: --->-->ComplexManifold(constructor): Not documented!!!! --->-->ComplexManifold((imaginary (%))): Not documented!!!! --->-->ComplexManifold((real (R %))): Not documented!!!! --->-->ComplexManifold((imag (R %))): Not documented!!!! --->-->ComplexManifold((conj (% %))): Not documented!!!! --->-->ComplexManifold((norm (R %))): Not documented!!!! --->-->ComplexManifold((arg (R %))): Not documented!!!! --->-->ComplexManifold((coerce ((Complex R) %))): Not documented!!!! --->-->ComplexManifold(): Missing Description ; compiling file "/var/aw/var/LatexWiki/CM.NRLIB/CM.lsp" (written 10 OCT 2024 12:13:40 PM):
; wrote /var/aw/var/LatexWiki/CM.NRLIB/CM.fasl ; compilation finished in 0:00:00.040 ------------------------------------------------------------------------ ComplexManifold is now explicitly exposed in frame initial ComplexManifold will be automatically loaded when needed from /var/aw/var/LatexWiki/CM.NRLIB/CM

fricas
)show CM EXPR INT
ComplexManifold(Expression(Integer)) is a domain constructor. Abbreviation for ComplexManifold is CM This constructor is exposed in this frame. 67 Names for 103 Operations in this Domain. ------------------------------- Operations --------------------------------
#? : % -> NonNegativeInteger ?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> % ?*? : (%, Integer) -> % ?*? : (%, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?=? : (%, %) -> Boolean D : (%, List(Symbol)) -> % D : (%, Symbol) -> % 1 : () -> % 0 : () -> % ?^? : (%, PositiveInteger) -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % arg : % -> Expression(Integer) associator : (%, %, %) -> % coerce : % -> OutputForm coerce : Expression(Integer) -> % coerce : Fraction(Integer) -> % coerce : Integer -> % coerce : % -> % commutator : (%, %) -> % conj : % -> % copy : % -> % differentiate : (%, Symbol) -> % empty : () -> % empty? : % -> Boolean eq? : (%, %) -> Boolean first : % -> Expression(Integer) imag : % -> Expression(Integer) imaginary : () -> % index? : (Integer, %) -> Boolean indices : % -> List(Integer) latex : % -> String maxIndex : % -> Integer minIndex : % -> Integer norm : % -> Expression(Integer) nthRoot : (%, Integer) -> % one? : % -> Boolean opposite? : (%, %) -> Boolean real : % -> Expression(Integer) recip : % -> Union(%,"failed") retract : % -> Fraction(Integer) retract : % -> Integer sample : () -> % sqrt : % -> % unitVector : PositiveInteger -> % zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (Expression(Integer), %) -> % ?*? : (NonNegativeInteger, %) -> % ?*? : (%, Expression(Integer)) -> % D : (%, List(Symbol), List(NonNegativeInteger)) -> % D : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> % D : (%, (Expression(Integer) -> Expression(Integer))) -> % D : (%, Symbol, NonNegativeInteger) -> % ?^? : (%, Fraction(Integer)) -> % ?^? : (%, NonNegativeInteger) -> % any? : ((Expression(Integer) -> Boolean), %) -> Boolean characteristic : () -> NonNegativeInteger coerce : % -> Complex(Expression(Integer)) coerce : % -> Vector(Expression(Integer)) count : (Expression(Integer), %) -> NonNegativeInteger count : ((Expression(Integer) -> Boolean), %) -> NonNegativeInteger differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % differentiate : (%, List(Symbol)) -> % differentiate : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> % differentiate : (%, (Expression(Integer) -> Expression(Integer))) -> % differentiate : (%, Symbol, NonNegativeInteger) -> % directProduct : Vector(Expression(Integer)) -> % dot : (%, %) -> Expression(Integer) elt : (%, Integer, Expression(Integer)) -> Expression(Integer) elt : (%, Integer) -> Expression(Integer) entries : % -> List(Expression(Integer)) entry? : (Expression(Integer), %) -> Boolean every? : ((Expression(Integer) -> Boolean), %) -> Boolean leftPower : (%, NonNegativeInteger) -> % leftPower : (%, PositiveInteger) -> % leftRecip : % -> Union(%,"failed") less? : (%, NonNegativeInteger) -> Boolean map : ((Expression(Integer) -> Expression(Integer)), %) -> % max : (((Expression(Integer), Expression(Integer)) -> Boolean), %) -> Expression(Integer) member? : (Expression(Integer), %) -> Boolean members : % -> List(Expression(Integer)) more? : (%, NonNegativeInteger) -> Boolean parts : % -> List(Expression(Integer)) plenaryPower : (%, PositiveInteger) -> % qelt : (%, Integer) -> Expression(Integer) reducedSystem : Matrix(%) -> Matrix(Expression(Integer)) reducedSystem : Matrix(%) -> Matrix(Integer) reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Expression(Integer)),vec: Vector(Expression(Integer))) reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Integer),vec: Vector(Integer)) retract : % -> Expression(Integer) retractIfCan : % -> Union(Expression(Integer),"failed") retractIfCan : % -> Union(Fraction(Integer),"failed") retractIfCan : % -> Union(Integer,"failed") rightPower : (%, NonNegativeInteger) -> % rightPower : (%, PositiveInteger) -> % rightRecip : % -> Union(%,"failed") size? : (%, NonNegativeInteger) -> Boolean subtractIfCan : (%, %) -> Union(%,"failed")

Compare:

fricas
)show COMPLEX EXPR INT
Complex(Expression(Integer)) is a domain constructor. Abbreviation for Complex is COMPLEX This constructor is exposed in this frame. 114 Names for 167 Operations in this Domain. ------------------------------- Operations --------------------------------
?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> % ?*? : (%, Integer) -> % ?*? : (%, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?/? : (%, %) -> % ?=? : (%, %) -> Boolean D : (%, List(Symbol)) -> % D : (%, Symbol) -> % 1 : () -> % 0 : () -> % ?^? : (%, Integer) -> % ?^? : (%, PositiveInteger) -> % ?^? : (%, %) -> % acos : % -> % acosh : % -> % acot : % -> % acoth : % -> % acsc : % -> % acsch : % -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % asec : % -> % asech : % -> % asin : % -> % asinh : % -> % associates? : (%, %) -> Boolean associator : (%, %, %) -> % atan : % -> % atanh : % -> % basis : () -> Vector(%) coerce : % -> OutputForm coerce : Expression(Integer) -> % coerce : Fraction(Integer) -> % coerce : Integer -> % coerce : % -> % commutator : (%, %) -> % conjugate : % -> % convert : % -> InputForm convert : % -> Pattern(Integer) cos : % -> % cosh : % -> % cot : % -> % coth : % -> % csc : % -> % csch : % -> % differentiate : (%, Symbol) -> % exp : % -> % factor : % -> Factored(%) gcd : List(%) -> % gcd : (%, %) -> % generator : () -> % imag : % -> Expression(Integer) imaginary : () -> % inv : % -> % latex : % -> String lcm : List(%) -> % lcm : (%, %) -> % log : % -> % norm : % -> Expression(Integer) nthRoot : (%, Integer) -> % one? : % -> Boolean opposite? : (%, %) -> Boolean pi : () -> % prime? : % -> Boolean ?quo? : (%, %) -> % rank : () -> PositiveInteger real : % -> Expression(Integer) recip : % -> Union(%,"failed") ?rem? : (%, %) -> % retract : % -> Fraction(Integer) retract : % -> Integer sample : () -> % sec : % -> % sech : % -> % sin : % -> % sinh : % -> % sizeLess? : (%, %) -> Boolean smaller? : (%, %) -> Boolean sqrt : % -> % squareFree : % -> Factored(%) squareFreePart : % -> % tan : % -> % tanh : % -> % trace : % -> Expression(Integer) unit? : % -> Boolean unitCanonical : % -> % zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (Expression(Integer), %) -> % ?*? : (Fraction(Integer), %) -> % ?*? : (NonNegativeInteger, %) -> % ?*? : (%, Expression(Integer)) -> % ?*? : (%, Fraction(Integer)) -> % D : (%, List(Symbol), List(NonNegativeInteger)) -> % D : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> % D : (%, (Expression(Integer) -> Expression(Integer))) -> % D : (%, Symbol, NonNegativeInteger) -> % ?^? : (%, Fraction(Integer)) -> % ?^? : (%, NonNegativeInteger) -> % argument : % -> Expression(Integer) characteristic : () -> NonNegativeInteger characteristicPolynomial : % -> SparseUnivariatePolynomial(Expression(Integer)) complex : (Expression(Integer), Expression(Integer)) -> % convert : % -> SparseUnivariatePolynomial(Expression(Integer)) convert : % -> Vector(Expression(Integer)) convert : SparseUnivariatePolynomial(Expression(Integer)) -> % convert : Vector(Expression(Integer)) -> % coordinates : (Vector(%), Vector(%)) -> Matrix(Expression(Integer)) coordinates : Vector(%) -> Matrix(Expression(Integer)) coordinates : (%, Vector(%)) -> Vector(Expression(Integer)) coordinates : % -> Vector(Expression(Integer)) definingPolynomial : () -> SparseUnivariatePolynomial(Expression(Integer)) derivationCoordinates : (Vector(%), (Expression(Integer) -> Expression(Integer))) -> Matrix(Expression(Integer)) differentiate : (%, List(Symbol), List(NonNegativeInteger)) -> % differentiate : (%, List(Symbol)) -> % differentiate : (%, (Expression(Integer) -> Expression(Integer)), NonNegativeInteger) -> % differentiate : (%, (Expression(Integer) -> Expression(Integer))) -> % differentiate : (%, Symbol, NonNegativeInteger) -> % discriminant : Vector(%) -> Expression(Integer) discriminant : () -> Expression(Integer) divide : (%, %) -> Record(quotient: %,remainder: %) euclideanSize : % -> NonNegativeInteger expressIdealMember : (List(%), %) -> Union(List(%),"failed") exquo : (%, Expression(Integer)) -> Union(%,"failed") exquo : (%, %) -> Union(%,"failed") extendedEuclidean : (%, %) -> Record(coef1: %,coef2: %,generator: %) extendedEuclidean : (%, %, %) -> Union(Record(coef1: %,coef2: %),"failed") factorPolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) factorSquareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) lcmCoef : (%, %) -> Record(llcm_res: %,coeff1: %,coeff2: %) leftPower : (%, NonNegativeInteger) -> % leftPower : (%, PositiveInteger) -> % leftRecip : % -> Union(%,"failed") lift : % -> SparseUnivariatePolynomial(Expression(Integer)) map : ((Expression(Integer) -> Expression(Integer)), %) -> % minimalPolynomial : % -> SparseUnivariatePolynomial(Expression(Integer)) multiEuclidean : (List(%), %) -> Union(List(%),"failed") patternMatch : (%, Pattern(Integer), PatternMatchResult(Integer,%)) -> PatternMatchResult(Integer,%) plenaryPower : (%, PositiveInteger) -> % principalIdeal : List(%) -> Record(coef: List(%),generator: %) reduce : Fraction(SparseUnivariatePolynomial(Expression(Integer))) -> Union(%,"failed") reduce : SparseUnivariatePolynomial(Expression(Integer)) -> % reducedSystem : Matrix(%) -> Matrix(Expression(Integer)) reducedSystem : Matrix(%) -> Matrix(Integer) reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Expression(Integer)),vec: Vector(Expression(Integer))) reducedSystem : (Matrix(%), Vector(%)) -> Record(mat: Matrix(Integer),vec: Vector(Integer)) regularRepresentation : (%, Vector(%)) -> Matrix(Expression(Integer)) regularRepresentation : % -> Matrix(Expression(Integer)) represents : (Vector(Expression(Integer)), Vector(%)) -> % represents : Vector(Expression(Integer)) -> % retract : % -> Expression(Integer) retractIfCan : % -> Union(Expression(Integer),"failed") retractIfCan : % -> Union(Fraction(Integer),"failed") retractIfCan : % -> Union(Integer,"failed") rightPower : (%, NonNegativeInteger) -> % rightPower : (%, PositiveInteger) -> % rightRecip : % -> Union(%,"failed") solveLinearPolynomialEquation : (List(SparseUnivariatePolynomial(%)), SparseUnivariatePolynomial(%)) -> Union(List(SparseUnivariatePolynomial(%)),"failed") squareFreePolynomial : SparseUnivariatePolynomial(%) -> Factored(SparseUnivariatePolynomial(%)) subtractIfCan : (%, %) -> Union(%,"failed") traceMatrix : Vector(%) -> Matrix(Expression(Integer)) traceMatrix : () -> Matrix(Expression(Integer)) unitNormal : % -> Record(unit: %,canonical: %,associate: %)

Tests:

fricas
a:CM(EXPR INT) := 3

\label{eq1}3(1)
Type: ComplexManifold?(Expression(Integer))
fricas
b:CM(EXPR INT) := -5

\label{eq2}- 5(2)
Type: ComplexManifold?(Expression(Integer))
fricas
real(a)

\label{eq3}3(3)
Type: Expression(Integer)
fricas
norm a

\label{eq4}9(4)
Type: Expression(Integer)
fricas
norm b

\label{eq5}25(5)
Type: Expression(Integer)
fricas
ab:=a*b

\label{eq6}-{15}(6)
Type: ComplexManifold?(Expression(Integer))
fricas
real ab

\label{eq7}-{15}(7)
Type: Expression(Integer)
fricas
imag ab

\label{eq8}0(8)
Type: Expression(Integer)
fricas
s1:=sqrt(a)

\label{eq9}\sqrt{3}(9)
Type: ComplexManifold?(Expression(Integer))
fricas
real s1

\label{eq10}\sqrt{3}(10)
Type: Expression(Integer)
fricas
imag s1

\label{eq11}0(11)
Type: Expression(Integer)
fricas
)set break resume
s2:=sqrt(b)
>> Error detected within library code: catdef: division by zero
Continuing to read the file...
real s2

\label{eq12}s 2(12)
Type: Expression(Integer)
fricas
imag s2

\label{eq13}0(13)
Type: Expression(Integer)
fricas
I:CM(EXPR INT) := imaginary()

\label{eq14}i(14)
Type: ComplexManifold?(Expression(Integer))
fricas
real I

\label{eq15}0(15)
Type: Expression(Integer)
fricas
norm I

\label{eq16}1(16)
Type: Expression(Integer)
fricas
imag I

\label{eq17}1(17)
Type: Expression(Integer)
fricas
imag conj I

\label{eq18}- 1(18)
Type: Expression(Integer)
fricas
s3:=sqrt(I)

\label{eq19}{\frac{\sqrt{2}}{2}}+{{\frac{\sqrt{2}}{2}}\  i}(19)
Type: ComplexManifold?(Expression(Integer))
fricas
s3*s3

\label{eq20}i(20)
Type: ComplexManifold?(Expression(Integer))
fricas
c1:=conj(a+b*I)

\label{eq21}3 +{5 \  i}(21)
Type: ComplexManifold?(Expression(Integer))
fricas
real c1

\label{eq22}3(22)
Type: Expression(Integer)
fricas
imag c1

\label{eq23}5(23)
Type: Expression(Integer)
fricas
norm c1

\label{eq24}34(24)
Type: Expression(Integer)
fricas
c1::Complex(EXPR INT)

\label{eq25}3 +{5 \  i}(25)
Type: Complex(Expression(Integer))
fricas
sqrt %

\label{eq26}\begin{array}{@{}l}
\displaystyle
{\frac{\root{4}\of{34}}{\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}}+ 
\
\
\displaystyle
{{\frac{5 \ {\root{4}\of{34}}}{{\left({\sqrt{34}}+ 3 \right)}\ {\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}}}\  i}
(26)
Type: Complex(Expression(Integer))
fricas
s4:=sqrt(c1)

\label{eq27}\begin{array}{@{}l}
\displaystyle
{\frac{\sqrt{\sqrt{34}}}{\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}}+ 
\
\
\displaystyle
{{\frac{5 \ {\sqrt{\sqrt{34}}}}{{\left({\sqrt{34}}+ 3 \right)}\ {\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}}}\  i}
(27)
Type: ComplexManifold?(Expression(Integer))
fricas
real s4

\label{eq28}\frac{\sqrt{\sqrt{34}}}{\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}(28)
Type: Expression(Integer)
fricas
imag s4

\label{eq29}\frac{5 \ {\sqrt{\sqrt{34}}}}{{\left({\sqrt{34}}+ 3 \right)}\ {\sqrt{\frac{{6 \ {\sqrt{34}}}+{68}}{{6 \ {\sqrt{34}}}+{43}}}}}(29)
Type: Expression(Integer)
fricas
s4*s4

\label{eq30}3 +{5 \  i}(30)
Type: ComplexManifold?(Expression(Integer))
fricas
%::Complex(EXPR INT)

\label{eq31}3 +{5 \  i}(31)
Type: Complex(Expression(Integer))
fricas
normalize %

\label{eq32}{5 \ {\sqrt{- 1}}}+ 3(32)
Type: Expression(Integer)
fricas
%::Complex(EXPR INT)::Complex(INT)
Cannot convert the value from type Complex(Expression(Integer)) to Complex(Integer) .
Continuing to read the file...