axiom
)show SparseUnivariatePolynomial
SparseUnivariatePolynomial R: Ring is a domain constructor
Abbreviation for SparseUnivariatePolynomial is SUP
This constructor is not exposed in this frame.
Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-linux/../../src/algebra/SUP.spad to
see algebra source code for SUP
------------------------------- Operations --------------------------------
?*? : (%,R) -> % ?*? : (R,%) -> %
?*? : (%,%) -> % ?*? : (Integer,%) -> %
?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) ->
%
?+? : (%,%) -> % ?-? : (%,%) -> %
-? : % -> % ?=? : (%,%) -> Boolean
D : (%,(R -> R)) -> % D : % -> %
D : (%,NonNegativeInteger) -> % 1 : () -> %
0 : () -> % ?^? : (%,PositiveInteger) -> %
coefficients : % -> List R coerce : R -> %
coerce : Integer -> % coerce : % -> OutputForm
degree : % -> NonNegativeInteger differentiate : % -> %
?.? : (%,%) -> % ?.? : (%,R) -> R
eval : (%,List %,List %) -> % eval : (%,%,%) -> %
eval : (%,Equation %) -> % eval : (%,List Equation %) -> %
ground : % -> R ground? : % -> Boolean
hash : % -> SingleInteger init : () -> % if R has STEP
latex : % -> String leadingCoefficient : % -> R
leadingMonomial : % -> % map : ((R -> R),%) -> %
monomial? : % -> Boolean monomials : % -> List %
one? : % -> Boolean primitiveMonomials : % -> List %
pseudoRemainder : (%,%) -> % recip : % -> Union(%,"failed")
reductum : % -> % retract : % -> R
sample : () -> % zero? : % -> Boolean
?~=? : (%,%) -> Boolean
?*? : (Fraction Integer,%) -> % if R has ALGEBRA FRAC INT
?*? : (%,Fraction Integer) -> % if R has ALGEBRA FRAC INT
?*? : (NonNegativeInteger,%) -> %
?**? : (%,NonNegativeInteger) -> %
?/? : (%,R) -> % if R has FIELD
?<? : (%,%) -> Boolean if R has ORDSET
?<=? : (%,%) -> Boolean if R has ORDSET
?>? : (%,%) -> Boolean if R has ORDSET
?>=? : (%,%) -> Boolean if R has ORDSET
D : (%,(R -> R),NonNegativeInteger) -> %
D : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL
D : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL
D : (%,List Symbol) -> % if R has PDRING SYMBOL
D : (%,Symbol) -> % if R has PDRING SYMBOL
D : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> %
D : (%,SingletonAsOrderedSet,NonNegativeInteger) -> %
D : (%,List SingletonAsOrderedSet) -> %
D : (%,SingletonAsOrderedSet) -> %
?^? : (%,NonNegativeInteger) -> %
associates? : (%,%) -> Boolean if R has INTDOM
binomThmExpt : (%,%,NonNegativeInteger) -> % if R has COMRING
characteristic : () -> NonNegativeInteger
charthRoot : % -> Union(%,"failed") if $ has CHARNZ and R has PFECAT or R
has CHARNZ
coefficient : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> %
coefficient : (%,SingletonAsOrderedSet,NonNegativeInteger) -> %
coefficient : (%,NonNegativeInteger) -> R
coerce : % -> % if R has INTDOM
coerce : Fraction Integer -> % if R has ALGEBRA FRAC INT or R has RETRACT FRAC INT
coerce : SingletonAsOrderedSet -> %
composite : (Fraction %,%) -> Union(Fraction %,"failed") if R has INTDOM
composite : (%,%) -> Union(%,"failed") if R has INTDOM
conditionP : Matrix % -> Union(Vector %,"failed") if $ has CHARNZ and R
has PFECAT
content : (%,SingletonAsOrderedSet) -> % if R has GCDDOM
content : % -> R if R has GCDDOM
convert : % -> InputForm if SingletonAsOrderedSet has KONVERT INFORM and R has KONVERT
INFORM
convert : % -> Pattern Integer if SingletonAsOrderedSet has KONVERT PATTERN INT and R
has KONVERT PATTERN INT
convert : % -> Pattern Float if SingletonAsOrderedSet has KONVERT PATTERN FLOAT and R
has KONVERT PATTERN FLOAT
degree : (%,List SingletonAsOrderedSet) -> List NonNegativeInteger
degree : (%,SingletonAsOrderedSet) -> NonNegativeInteger
differentiate : (%,(R -> R),%) -> %
differentiate : (%,(R -> R)) -> %
differentiate : (%,(R -> R),NonNegativeInteger) -> %
differentiate : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL
differentiate : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL
differentiate : (%,List Symbol) -> % if R has PDRING SYMBOL
differentiate : (%,Symbol) -> % if R has PDRING SYMBOL
differentiate : (%,NonNegativeInteger) -> %
differentiate : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> %
differentiate : (%,SingletonAsOrderedSet,NonNegativeInteger) -> %
differentiate : (%,List SingletonAsOrderedSet) -> %
differentiate : (%,SingletonAsOrderedSet) -> %
discriminant : % -> R if R has COMRING
discriminant : (%,SingletonAsOrderedSet) -> % if R has COMRING
divide : (%,%) -> Record(quotient: %,remainder: %) if R has FIELD
divideExponents : (%,NonNegativeInteger) -> Union(%,"failed")
?.? : (%,Fraction %) -> Fraction % if R has INTDOM
elt : (Fraction %,R) -> R if R has FIELD
elt : (Fraction %,Fraction %) -> Fraction % if R has INTDOM
euclideanSize : % -> NonNegativeInteger if R has FIELD
eval : (%,List SingletonAsOrderedSet,List %) -> %
eval : (%,SingletonAsOrderedSet,%) -> %
eval : (%,List SingletonAsOrderedSet,List R) -> %
eval : (%,SingletonAsOrderedSet,R) -> %
expressIdealMember : (List %,%) -> Union(List %,"failed") if R has FIELD
exquo : (%,%) -> Union(%,"failed") if R has INTDOM
exquo : (%,R) -> Union(%,"failed") if R has INTDOM
extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) if R
has FIELD
extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2:
%),"failed") if R has FIELD
factor : % -> Factored % if R has PFECAT
factorPolynomial : SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial
% if R has PFECAT
factorSquareFreePolynomial : SparseUnivariatePolynomial % -> Factored
SparseUnivariatePolynomial % if R has PFECAT
fmecg : (%,NonNegativeInteger,R,%) -> %
gcd : (%,%) -> % if R has GCDDOM
gcd : List % -> % if R has GCDDOM
gcdPolynomial : (SparseUnivariatePolynomial %,SparseUnivariatePolynomial %) ->
SparseUnivariatePolynomial % if R has GCDDOM
integrate : % -> % if R has ALGEBRA FRAC INT
isExpt : % -> Union(Record(var: SingletonAsOrderedSet,exponent:
NonNegativeInteger),"failed")
isPlus : % -> Union(List %,"failed")
isTimes : % -> Union(List %,"failed")
karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %)
lcm : (%,%) -> % if R has GCDDOM
lcm : List % -> % if R has GCDDOM
mainVariable : % -> Union(SingletonAsOrderedSet,"failed")
makeSUP : % -> SparseUnivariatePolynomial R
mapExponents : ((NonNegativeInteger -> NonNegativeInteger),%) -> %
max : (%,%) -> % if R has ORDSET
min : (%,%) -> % if R has ORDSET
minimumDegree : (%,List SingletonAsOrderedSet) -> List NonNegativeInteger
minimumDegree : (%,SingletonAsOrderedSet) -> NonNegativeInteger
minimumDegree : % -> NonNegativeInteger
monicDivide : (%,%) -> Record(quotient: %,remainder: %)
monicDivide : (%,%,SingletonAsOrderedSet) -> Record(quotient: %,remainder: %)
monomial : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> %
monomial : (%,SingletonAsOrderedSet,NonNegativeInteger) -> %
monomial : (R,NonNegativeInteger) -> %
multiEuclidean : (List %,%) -> Union(List %,"failed") if R has FIELD
multiplyExponents : (%,NonNegativeInteger) -> %
multivariate : (SparseUnivariatePolynomial %,SingletonAsOrderedSet) -> %
multivariate : (SparseUnivariatePolynomial R,SingletonAsOrderedSet) -> %
nextItem : % -> Union(%,"failed") if R has STEP
numberOfMonomials : % -> NonNegativeInteger
order : (%,%) -> NonNegativeInteger if R has INTDOM
outputForm : (%,OutputForm) -> OutputForm
patternMatch : (%,Pattern Integer,PatternMatchResult(Integer,%)) ->
PatternMatchResult(Integer,%) if SingletonAsOrderedSet has PATMAB INT and R has PATMAB INT
patternMatch : (%,Pattern Float,PatternMatchResult(Float,%)) ->
PatternMatchResult(Float,%) if SingletonAsOrderedSet has PATMAB FLOAT and R has PATMAB FLOAT
pomopo! : (%,R,NonNegativeInteger,%) -> %
prime? : % -> Boolean if R has PFECAT
primitivePart : (%,SingletonAsOrderedSet) -> % if R has GCDDOM
primitivePart : % -> % if R has GCDDOM
principalIdeal : List % -> Record(coef: List %,generator: %) if R has FIELD
pseudoDivide : (%,%) -> Record(coef: R,quotient: %,remainder: %) if R has
INTDOM
pseudoQuotient : (%,%) -> % if R has INTDOM
?quo? : (%,%) -> % if R has FIELD
reducedSystem : Matrix % -> Matrix R
reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix R,vec: Vector R)
reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix Integer,vec: Vector
Integer) if R has LINEXP INT
reducedSystem : Matrix % -> Matrix Integer if R has LINEXP INT
?rem? : (%,%) -> % if R has FIELD
resultant : (%,%) -> R if R has COMRING
resultant : (%,%,SingletonAsOrderedSet) -> % if R has COMRING
retract : % -> SingletonAsOrderedSet
retract : % -> Integer if R has RETRACT INT
retract : % -> Fraction Integer if R has RETRACT FRAC INT
retractIfCan : % -> Union(SingletonAsOrderedSet,"failed")
retractIfCan : % -> Union(Integer,"failed") if R has RETRACT INT
retractIfCan : % -> Union(Fraction Integer,"failed") if R has RETRACT FRAC
INT
retractIfCan : % -> Union(R,"failed")
separate : (%,%) -> Record(primePart: %,commonPart: %) if R has GCDDOM
shiftLeft : (%,NonNegativeInteger) -> %
shiftRight : (%,NonNegativeInteger) -> %
sizeLess? : (%,%) -> Boolean if R has FIELD
solveLinearPolynomialEquation : (List SparseUnivariatePolynomial
%,SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial
%,"failed") if R has PFECAT
squareFree : % -> Factored % if R has GCDDOM
squareFreePart : % -> % if R has GCDDOM
squareFreePolynomial : SparseUnivariatePolynomial % -> Factored
SparseUnivariatePolynomial % if R has PFECAT
subResultantGcd : (%,%) -> % if R has INTDOM
subtractIfCan : (%,%) -> Union(%,"failed")
totalDegree : (%,List SingletonAsOrderedSet) -> NonNegativeInteger
totalDegree : % -> NonNegativeInteger
unit? : % -> Boolean if R has INTDOM
unitCanonical : % -> % if R has INTDOM
unitNormal : % -> Record(unit: %,canonical: %,associate: %) if R has INTDOM
univariate : % -> SparseUnivariatePolynomial R
univariate : (%,SingletonAsOrderedSet) -> SparseUnivariatePolynomial %
unmakeSUP : SparseUnivariatePolynomial R -> %
variables : % -> List SingletonAsOrderedSet
vectorise : (%,NonNegativeInteger) -> Vector R
A := SparseUnivariatePolynomial( Integer)
Type: Domain
axiom
1::A
Type: SparseUnivariatePolynomial
? Integer
axiom
x := monomial(1,1)$A
Type: SparseUnivariatePolynomial
? Integer
axiom
x*x*x +x*x +x
Type: SparseUnivariatePolynomial
? Integer