login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox42 revision 3 of 10

1 2 3 4 5 6 7 8 9 10
Editor: endymion
Time: 2008/08/10 20:11:51 GMT-7
Note:

added:

1:A


axiom
)show SparseUnivariatePolynomial
SparseUnivariatePolynomial R: Ring is a domain constructor Abbreviation for SparseUnivariatePolynomial is SUP This constructor is not exposed in this frame. Issue )edit /usr/local/lib/axiom/target/x86_64-unknown-linux/../../src/algebra/SUP.spad to see algebra source code for SUP
------------------------------- Operations -------------------------------- ?*? : (%,R) -> % ?*? : (R,%) -> % ?*? : (%,%) -> % ?*? : (Integer,%) -> % ?*? : (PositiveInteger,%) -> % ?**? : (%,PositiveInteger) -> % ?+? : (%,%) -> % ?-? : (%,%) -> % -? : % -> % ?=? : (%,%) -> Boolean D : (%,(R -> R)) -> % D : % -> % D : (%,NonNegativeInteger) -> % 1 : () -> % 0 : () -> % ?^? : (%,PositiveInteger) -> % coefficients : % -> List R coerce : R -> % coerce : Integer -> % coerce : % -> OutputForm degree : % -> NonNegativeInteger differentiate : % -> % ?.? : (%,%) -> % ?.? : (%,R) -> R eval : (%,List %,List %) -> % eval : (%,%,%) -> % eval : (%,Equation %) -> % eval : (%,List Equation %) -> % ground : % -> R ground? : % -> Boolean hash : % -> SingleInteger init : () -> % if R has STEP latex : % -> String leadingCoefficient : % -> R leadingMonomial : % -> % map : ((R -> R),%) -> % monomial? : % -> Boolean monomials : % -> List % one? : % -> Boolean primitiveMonomials : % -> List % pseudoRemainder : (%,%) -> % recip : % -> Union(%,"failed") reductum : % -> % retract : % -> R sample : () -> % zero? : % -> Boolean ?~=? : (%,%) -> Boolean ?*? : (Fraction Integer,%) -> % if R has ALGEBRA FRAC INT ?*? : (%,Fraction Integer) -> % if R has ALGEBRA FRAC INT ?*? : (NonNegativeInteger,%) -> % ?**? : (%,NonNegativeInteger) -> % ?/? : (%,R) -> % if R has FIELD ?<? : (%,%) -> Boolean if R has ORDSET ?<=? : (%,%) -> Boolean if R has ORDSET ?>? : (%,%) -> Boolean if R has ORDSET ?>=? : (%,%) -> Boolean if R has ORDSET D : (%,(R -> R),NonNegativeInteger) -> % D : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL D : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL D : (%,List Symbol) -> % if R has PDRING SYMBOL D : (%,Symbol) -> % if R has PDRING SYMBOL D : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> % D : (%,SingletonAsOrderedSet,NonNegativeInteger) -> % D : (%,List SingletonAsOrderedSet) -> % D : (%,SingletonAsOrderedSet) -> % ?^? : (%,NonNegativeInteger) -> % associates? : (%,%) -> Boolean if R has INTDOM binomThmExpt : (%,%,NonNegativeInteger) -> % if R has COMRING characteristic : () -> NonNegativeInteger charthRoot : % -> Union(%,"failed") if $ has CHARNZ and R has PFECAT or R has CHARNZ coefficient : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> % coefficient : (%,SingletonAsOrderedSet,NonNegativeInteger) -> % coefficient : (%,NonNegativeInteger) -> R coerce : % -> % if R has INTDOM coerce : Fraction Integer -> % if R has ALGEBRA FRAC INT or R has RETRACT FRAC INT coerce : SingletonAsOrderedSet -> % composite : (Fraction %,%) -> Union(Fraction %,"failed") if R has INTDOM composite : (%,%) -> Union(%,"failed") if R has INTDOM conditionP : Matrix % -> Union(Vector %,"failed") if $ has CHARNZ and R has PFECAT content : (%,SingletonAsOrderedSet) -> % if R has GCDDOM content : % -> R if R has GCDDOM convert : % -> InputForm if SingletonAsOrderedSet has KONVERT INFORM and R has KONVERT INFORM convert : % -> Pattern Integer if SingletonAsOrderedSet has KONVERT PATTERN INT and R has KONVERT PATTERN INT convert : % -> Pattern Float if SingletonAsOrderedSet has KONVERT PATTERN FLOAT and R has KONVERT PATTERN FLOAT degree : (%,List SingletonAsOrderedSet) -> List NonNegativeInteger degree : (%,SingletonAsOrderedSet) -> NonNegativeInteger differentiate : (%,(R -> R),%) -> % differentiate : (%,(R -> R)) -> % differentiate : (%,(R -> R),NonNegativeInteger) -> % differentiate : (%,List Symbol,List NonNegativeInteger) -> % if R has PDRING SYMBOL differentiate : (%,Symbol,NonNegativeInteger) -> % if R has PDRING SYMBOL differentiate : (%,List Symbol) -> % if R has PDRING SYMBOL differentiate : (%,Symbol) -> % if R has PDRING SYMBOL differentiate : (%,NonNegativeInteger) -> % differentiate : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> % differentiate : (%,SingletonAsOrderedSet,NonNegativeInteger) -> % differentiate : (%,List SingletonAsOrderedSet) -> % differentiate : (%,SingletonAsOrderedSet) -> % discriminant : % -> R if R has COMRING discriminant : (%,SingletonAsOrderedSet) -> % if R has COMRING divide : (%,%) -> Record(quotient: %,remainder: %) if R has FIELD divideExponents : (%,NonNegativeInteger) -> Union(%,"failed") ?.? : (%,Fraction %) -> Fraction % if R has INTDOM elt : (Fraction %,R) -> R if R has FIELD elt : (Fraction %,Fraction %) -> Fraction % if R has INTDOM euclideanSize : % -> NonNegativeInteger if R has FIELD eval : (%,List SingletonAsOrderedSet,List %) -> % eval : (%,SingletonAsOrderedSet,%) -> % eval : (%,List SingletonAsOrderedSet,List R) -> % eval : (%,SingletonAsOrderedSet,R) -> % expressIdealMember : (List %,%) -> Union(List %,"failed") if R has FIELD exquo : (%,%) -> Union(%,"failed") if R has INTDOM exquo : (%,R) -> Union(%,"failed") if R has INTDOM extendedEuclidean : (%,%) -> Record(coef1: %,coef2: %,generator: %) if R has FIELD extendedEuclidean : (%,%,%) -> Union(Record(coef1: %,coef2: %),"failed") if R has FIELD factor : % -> Factored % if R has PFECAT factorPolynomial : SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PFECAT factorSquareFreePolynomial : SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PFECAT fmecg : (%,NonNegativeInteger,R,%) -> % gcd : (%,%) -> % if R has GCDDOM gcd : List % -> % if R has GCDDOM gcdPolynomial : (SparseUnivariatePolynomial %,SparseUnivariatePolynomial %) -> SparseUnivariatePolynomial % if R has GCDDOM integrate : % -> % if R has ALGEBRA FRAC INT isExpt : % -> Union(Record(var: SingletonAsOrderedSet,exponent: NonNegativeInteger),"failed") isPlus : % -> Union(List %,"failed") isTimes : % -> Union(List %,"failed") karatsubaDivide : (%,NonNegativeInteger) -> Record(quotient: %,remainder: %) lcm : (%,%) -> % if R has GCDDOM lcm : List % -> % if R has GCDDOM mainVariable : % -> Union(SingletonAsOrderedSet,"failed") makeSUP : % -> SparseUnivariatePolynomial R mapExponents : ((NonNegativeInteger -> NonNegativeInteger),%) -> % max : (%,%) -> % if R has ORDSET min : (%,%) -> % if R has ORDSET minimumDegree : (%,List SingletonAsOrderedSet) -> List NonNegativeInteger minimumDegree : (%,SingletonAsOrderedSet) -> NonNegativeInteger minimumDegree : % -> NonNegativeInteger monicDivide : (%,%) -> Record(quotient: %,remainder: %) monicDivide : (%,%,SingletonAsOrderedSet) -> Record(quotient: %,remainder: %) monomial : (%,List SingletonAsOrderedSet,List NonNegativeInteger) -> % monomial : (%,SingletonAsOrderedSet,NonNegativeInteger) -> % monomial : (R,NonNegativeInteger) -> % multiEuclidean : (List %,%) -> Union(List %,"failed") if R has FIELD multiplyExponents : (%,NonNegativeInteger) -> % multivariate : (SparseUnivariatePolynomial %,SingletonAsOrderedSet) -> % multivariate : (SparseUnivariatePolynomial R,SingletonAsOrderedSet) -> % nextItem : % -> Union(%,"failed") if R has STEP numberOfMonomials : % -> NonNegativeInteger order : (%,%) -> NonNegativeInteger if R has INTDOM outputForm : (%,OutputForm) -> OutputForm patternMatch : (%,Pattern Integer,PatternMatchResult(Integer,%)) -> PatternMatchResult(Integer,%) if SingletonAsOrderedSet has PATMAB INT and R has PATMAB INT patternMatch : (%,Pattern Float,PatternMatchResult(Float,%)) -> PatternMatchResult(Float,%) if SingletonAsOrderedSet has PATMAB FLOAT and R has PATMAB FLOAT pomopo! : (%,R,NonNegativeInteger,%) -> % prime? : % -> Boolean if R has PFECAT primitivePart : (%,SingletonAsOrderedSet) -> % if R has GCDDOM primitivePart : % -> % if R has GCDDOM principalIdeal : List % -> Record(coef: List %,generator: %) if R has FIELD pseudoDivide : (%,%) -> Record(coef: R,quotient: %,remainder: %) if R has INTDOM pseudoQuotient : (%,%) -> % if R has INTDOM ?quo? : (%,%) -> % if R has FIELD reducedSystem : Matrix % -> Matrix R reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix R,vec: Vector R) reducedSystem : (Matrix %,Vector %) -> Record(mat: Matrix Integer,vec: Vector Integer) if R has LINEXP INT reducedSystem : Matrix % -> Matrix Integer if R has LINEXP INT ?rem? : (%,%) -> % if R has FIELD resultant : (%,%) -> R if R has COMRING resultant : (%,%,SingletonAsOrderedSet) -> % if R has COMRING retract : % -> SingletonAsOrderedSet retract : % -> Integer if R has RETRACT INT retract : % -> Fraction Integer if R has RETRACT FRAC INT retractIfCan : % -> Union(SingletonAsOrderedSet,"failed") retractIfCan : % -> Union(Integer,"failed") if R has RETRACT INT retractIfCan : % -> Union(Fraction Integer,"failed") if R has RETRACT FRAC INT retractIfCan : % -> Union(R,"failed") separate : (%,%) -> Record(primePart: %,commonPart: %) if R has GCDDOM shiftLeft : (%,NonNegativeInteger) -> % shiftRight : (%,NonNegativeInteger) -> % sizeLess? : (%,%) -> Boolean if R has FIELD solveLinearPolynomialEquation : (List SparseUnivariatePolynomial %,SparseUnivariatePolynomial %) -> Union(List SparseUnivariatePolynomial %,"failed") if R has PFECAT squareFree : % -> Factored % if R has GCDDOM squareFreePart : % -> % if R has GCDDOM squareFreePolynomial : SparseUnivariatePolynomial % -> Factored SparseUnivariatePolynomial % if R has PFECAT subResultantGcd : (%,%) -> % if R has INTDOM subtractIfCan : (%,%) -> Union(%,"failed") totalDegree : (%,List SingletonAsOrderedSet) -> NonNegativeInteger totalDegree : % -> NonNegativeInteger unit? : % -> Boolean if R has INTDOM unitCanonical : % -> % if R has INTDOM unitNormal : % -> Record(unit: %,canonical: %,associate: %) if R has INTDOM univariate : % -> SparseUnivariatePolynomial R univariate : (%,SingletonAsOrderedSet) -> SparseUnivariatePolynomial % unmakeSUP : SparseUnivariatePolynomial R -> % variables : % -> List SingletonAsOrderedSet vectorise : (%,NonNegativeInteger) -> Vector R
A := SparseUnivariatePolynomial( Integer)
LatexWiki Image(1)
Type: Domain
axiom
1:A
Declarations are only allowed on variables and 1 is not one.