login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox2 revision 9 of 12

1 2 3 4 5 6 7 8 9 10 11 12
Editor: page
Time: 2011/03/12 18:48:37 GMT-8
Note: wiki does not support mathml (yet)

changed:
-)set output tex off
)set output tex on

changed:
-)set output mathml on
-\end{axiom}
)set output mathml off
\end{axiom}

axiom
)set output tex on
 
axiom
)set output algebra off
 
axiom
)set output mathml off

Indefinite intregral

arctan = atan

axiom
integrate(1/atan(x),x)

\label{eq1}\int^{
\displaystyle
x}{{1 \over{\arctan \left({\%A}\right)}}\ {d \%A}}(1)
Type: Union(Expression(Integer),...)

Definite intregral

axiom
integrate(1/(a+z^3), z=0..1,"noPole");
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

axiom
integrate(1/(a+z^3), z=0..1,"noPole")

\label{eq2}{\left(
\begin{array}{@{}l}
\displaystyle
-{{\sqrt{3}}\ {\log{\left({{3 \ {a^2}\ {{\root{3}\of{a^2}}^2}}+{{\left(-{2 \ {a^3}}+{a^2}\right)}\ {\root{3}\of{a^2}}}+{a^4}-{2 \ {a^3}}}\right)}}}+{2 \ {\sqrt{3}}\ {\log \left({{{\root{3}\of{a^2}}^2}+{2 \  a \ {\root{3}\of{a^2}}}+{a^2}}\right)}}+ 
\
\
\displaystyle
{{12}\ {\arctan \left({{{2 \ {\sqrt{3}}\ {\root{3}\of{a^2}}}-{a \ {\sqrt{3}}}}\over{3 \  a}}\right)}}+{2 \  \pi}
(2)
Type: Union(f1: OrderedCompletion?(Expression(Integer)),...)

axiom
integrate(a/(b+z^2),z=0..1,"noPole")

\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{{\left(
\begin{array}{@{}l}
\displaystyle
-{2 \  a \ {\log \left({\sqrt{- b}}\right)}}+ 
\
\
\displaystyle
{a \ {\log \left({{{{\left(-{4 \ {b^2}}+{4 \  b}\right)}\ {\sqrt{- b}}}-{b^3}+{6 \ {b^2}}- b}\over{{b^2}+{2 \  b}+ 1}}\right)}}
(3)
Type: Union(f2: List(OrderedCompletion?(Expression(Integer))),...)

Solutions of Transcendental Equations

axiom
solve(cos(x)-y=-sin(x),x)

\label{eq4}\begin{array}{@{}l}
\displaystyle
\left[{x ={2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}+ 1}\over{y + 1}}\right)}}}, \: \right.
\
\
\displaystyle
\left.{x = -{2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}- 1}\over{y + 1}}\right)}}}\right] 
(4)
Type: List(Equation(Expression(Integer)))

axiom
solve(cos(x)-y=-sin(x),y)

\label{eq5}\left[{y ={{\sin \left({x}\right)}+{\cos \left({x}\right)}}}\right](5)
Type: List(Equation(Expression(Integer)))

axiom
solve(cos(x)-y=-sin(x),x)

\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{x ={2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}+ 1}\over{y + 1}}\right)}}}, \: \right.
\
\
\displaystyle
\left.{x = -{2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}- 1}\over{y + 1}}\right)}}}\right] 
(6)
Type: List(Equation(Expression(Integer)))

axiom
solve(cos(x)=0,x)

\label{eq7}\left[{x ={\pi \over 2}}\right](7)
Type: List(Equation(Expression(Integer)))

axiom
solve(sin(e) - e = 0, e)

\label{eq8}\left[ \right](8)
Type: List(Equation(Expression(Integer)))

axiom
solve(a*cos(t1) + b*sin(t1) = c, t1)

\label{eq9}\begin{array}{@{}l}
\displaystyle
\left[{t 1 ={2 \ {\arctan \left({{{\sqrt{-{c^2}+{b^2}+{a^2}}}+ b}\over{c + a}}\right)}}}, \: \right.
\
\
\displaystyle
\left.{t 1 = -{2 \ {\arctan \left({{{\sqrt{-{c^2}+{b^2}+{a^2}}}- b}\over{c + a}}\right)}}}\right] 
(9)
Type: List(Equation(Expression(Integer)))

axiom
solve(cos(x)-y=-sin(x),x)

\label{eq10}\begin{array}{@{}l}
\displaystyle
\left[{x ={2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}+ 1}\over{y + 1}}\right)}}}, \: \right.
\
\
\displaystyle
\left.{x = -{2 \ {\arctan \left({{{\sqrt{-{y^2}+ 2}}- 1}\over{y + 1}}\right)}}}\right] 
(10)
Type: List(Equation(Expression(Integer)))

Matrices

axiom
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]

\label{eq11}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- y}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- y}
(11)
Type: Matrix(Expression(Integer))

axiom
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]

\label{eq12}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- y}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- y}
(12)
Type: Matrix(Expression(Integer))
axiom
solve(A=0,y)
There are 18 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named solve with argument type(s) Equation(SquareMatrix(2,Expression(Integer))) Variable(y)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq13}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(13)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq14}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](14)
Type: List(Equation(Expression(Integer)))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq15}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(15)
Type: Matrix(Expression(Integer))
axiom
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq16}\begin{array}{@{}l}
\displaystyle
{\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right]}= \
\
\displaystyle
{\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right]}
(16)
Type: Equation(List(Equation(Expression(Integer))))
axiom
B(1)

\label{eq17}L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(17)
Type: Equation(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq18}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(18)
Type: Matrix(Expression(Integer))
axiom
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq19}\begin{array}{@{}l}
\displaystyle
{\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right]}= \
\
\displaystyle
{\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right]}
(19)
Type: Equation(List(Equation(Expression(Integer))))
axiom
B

\label{eq20}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](20)
Type: List(Equation(Expression(Integer)))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq21}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(21)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq22}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](22)
Type: List(Equation(Expression(Integer)))
axiom
B

\label{eq23}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](23)
Type: List(Equation(Expression(Integer)))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq24}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(24)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq25}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](25)
Type: List(Equation(Expression(Integer)))
axiom
B.1

\label{eq26}L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(26)
Type: Equation(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq27}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(27)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq28}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](28)
Type: List(Equation(Expression(Integer)))
axiom
v:=vector[v11,v12]

\label{eq29}\left[ v 11, \: v 12 \right](29)
Type: Vector(OrderedVariableList?([v11,v12]))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq30}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(30)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq31}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](31)
Type: List(Equation(Expression(Integer)))
axiom
v:=matrix[[B.1],[B.2]]

\label{eq32}\left[ 
\begin{array}{c}
{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}
\
{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}
(32)
Type: Matrix(Equation(Expression(Integer)))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq33}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(33)
Type: Matrix(Expression(Integer))
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq34}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](34)
Type: List(Equation(Expression(Integer)))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq35}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(35)
Type: Matrix(Expression(Integer))
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq36}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](36)
Type: List(Equation(Expression(Integer)))
axiom
a

\label{eq37}L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(37)
Type: Equation(Expression(Integer))
axiom
b

\label{eq38}L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(38)
Type: Equation(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq39}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(39)
Type: Matrix(Expression(Integer))
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq40}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](40)
Type: List(Equation(Expression(Integer)))
axiom
a

\label{eq41}L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}(41)
Type: Equation(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq42}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(42)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq43}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](43)
Type: List(Equation(Expression(Integer)))
axiom
LA1:=[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)]

\label{eq44}\left[{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}, \:{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}\right](44)
Type: List(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]

\label{eq45}\left[ 
\begin{array}{cc}
{{\cos \left({x}\right)}- L}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{{\cos \left({x}\right)}- L}
(45)
Type: Matrix(Expression(Integer))
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)

\label{eq46}\left[{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right](46)
Type: List(Equation(Expression(Integer)))
axiom
LA1:=matrix[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)]

\label{eq47}matrix_{{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}, \:{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}(47)
Type: Symbol

Complex Values

axiom
LA1:=matrix[sqrt(-1)*sin(x)]

\label{eq48}matrix_{{\sqrt{- 1}}\ {\sin \left({x}\right)}}(48)
Type: Symbol

axiom
A:=matrix[cos(x)-L]

\label{eq49}matrix_{{\cos \left({x}\right)}- L}(49)
Type: Symbol

axiom
A:=matrix[a,b]

\label{eq50}matrix_{{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}, \:{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}}(50)
Type: Symbol

axiom
A:=matrix[[a,b]]

\label{eq51}\left[ 
\begin{array}{cc}
{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}&{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}
(51)
Type: Matrix(Equation(Expression(Integer)))

axiom
A:=matrix[[a],[b]]

\label{eq52}\left[ 
\begin{array}{c}
{L ={{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}
\
{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}
(52)
Type: Matrix(Equation(Expression(Integer)))

axiom
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[b]]

\label{eq53}matrix_{{\left[{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}\right]}, \:{\left[{L ={-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}}\right]}}(53)
Type: Symbol

axiom
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)*cos(x)]]

\label{eq54}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
-{{\sqrt{- 1}}\ {\cos \left({x}\right)}\ {\sin \left({x}\right)}}
(54)
Type: Matrix(Expression(Integer))

axiom
LA1:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq55}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(55)
Type: Matrix(Expression(Integer))

axiom
LAM:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq56}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(56)
Type: Matrix(Expression(Integer))

axiom
L:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq57}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(57)
Type: Matrix(Expression(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq58}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(58)
Type: Matrix(Expression(Integer))
axiom
A*D
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq59}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(59)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq60}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(60)
Type: Matrix(Polynomial(Integer))

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq61}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(61)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq62}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(62)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq63}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(63)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq64}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(64)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq65}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(65)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq66}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(66)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq67}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(67)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq68}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(68)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq69}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(69)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq70}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(70)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq71}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(71)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq72}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(72)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq73}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(73)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq74}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(74)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq75}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(75)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq76}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(76)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq77}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(77)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq78}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(78)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq79}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(79)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq80}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(80)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq81}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(81)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq82}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(82)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq83}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(83)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq84}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(84)
Type: Matrix(Polynomial(Integer))
axiom
A*v
>> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]

\label{eq85}\left[ 
\begin{array}{cc}
{\cos \left({x}\right)}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{\cos \left({x}\right)}
(85)
Type: Matrix(Expression(Integer))
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq86}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(86)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq87}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(87)
Type: Matrix(Polynomial(Integer))
axiom
A*v

\label{eq88}\left[ 
\begin{array}{c}
{-{v 12 \ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 11 \ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(88)
Type: Matrix(Expression(Integer))
axiom
D(1,1)*v

\label{eq89}\left[ 
\begin{array}{c}
{{v 11 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 12 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(89)
Type: Matrix(Expression(Integer))
axiom
A*v-D(1,1)*v

\label{eq90}\left[ 
\begin{array}{c}
{{\left(-{v 11 \ {\sqrt{- 1}}}- v 12 \right)}\ {\sin \left({x}\right)}}
\
{{\left(-{v 12 \ {\sqrt{- 1}}}+ v 11 \right)}\ {\sin \left({x}\right)}}
(90)
Type: Matrix(Expression(Integer))

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]

\label{eq91}\left[ 
\begin{array}{cc}
{\cos \left({x}\right)}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{\cos \left({x}\right)}
(91)
Type: Matrix(Expression(Integer))
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq92}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(92)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq93}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(93)
Type: Matrix(Polynomial(Integer))
axiom
A*v

\label{eq94}\left[ 
\begin{array}{c}
{-{v 12 \ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 11 \ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(94)
Type: Matrix(Expression(Integer))
axiom
D(1,1)*v

\label{eq95}\left[ 
\begin{array}{c}
{{v 11 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 12 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(95)
Type: Matrix(Expression(Integer))
axiom
solve(A*v-D(1,1)*v=0,v(1,1))
There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named equation with argument type(s) Matrix(Expression(Integer)) NonNegativeInteger
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]

\label{eq96}\left[ 
\begin{array}{cc}
{\cos \left({x}\right)}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{\cos \left({x}\right)}
(96)
Type: Matrix(Expression(Integer))
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq97}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(97)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq98}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(98)
Type: Matrix(Polynomial(Integer))
axiom
A*v

\label{eq99}\left[ 
\begin{array}{c}
{-{v 12 \ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 11 \ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(99)
Type: Matrix(Expression(Integer))
axiom
D(1,1)*v

\label{eq100}\left[ 
\begin{array}{c}
{{v 11 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 12 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(100)
Type: Matrix(Expression(Integer))
axiom
solve(A*v-D(1,1)*v=0,v11)
There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named equation with argument type(s) Matrix(Expression(Integer)) NonNegativeInteger
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
There are 8 exposed and 4 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named - with argument type(s) Expression(Integer) Matrix(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]

\label{eq101}\left[ 
\begin{array}{c}
{{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
\
{-{{\sqrt{- 1}}\ {\sin \left({x}\right)}}+{\cos \left({x}\right)}}
(101)
Type: Matrix(Expression(Integer))
axiom
v:=matrix[[v11],[v12]]

\label{eq102}\left[ 
\begin{array}{c}
v 11 
\
v 12 
(102)
Type: Matrix(Polynomial(Integer))
axiom
A*v

\label{eq103}\left[ 
\begin{array}{c}
{-{v 12 \ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 11 \ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(103)
Type: Matrix(Expression(Integer))
axiom
D(1,1)*v

\label{eq104}\left[ 
\begin{array}{c}
{{v 11 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 12 \ {\sqrt{- 1}}\ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(104)
Type: Matrix(Expression(Integer))
axiom
A*v-D(1,1)*v

\label{eq105}\left[ 
\begin{array}{c}
{{\left(-{v 11 \ {\sqrt{- 1}}}- v 12 \right)}\ {\sin \left({x}\right)}}
\
{{\left(-{v 12 \ {\sqrt{- 1}}}+ v 11 \right)}\ {\sin \left({x}\right)}}
(105)
Type: Matrix(Expression(Integer))

axiom
A*v

\label{eq106}\left[ 
\begin{array}{c}
{-{v 12 \ {\sin \left({x}\right)}}+{v 11 \ {\cos \left({x}\right)}}}
\
{{v 11 \ {\sin \left({x}\right)}}+{v 12 \ {\cos \left({x}\right)}}}
(106)
Type: Matrix(Expression(Integer))


e^{i\ \pi}=-1
 

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]

\label{eq107}\left[ 
\begin{array}{cc}
{\cos \left({x}\right)}& -{\sin \left({x}\right)}
\
{\sin \left({x}\right)}&{\cos \left({x}\right)}
(107)
Type: Matrix(Expression(Integer))

Differential Equations

\begin(axiom) solve(D(y x, x)^2+y x=1,y,x) \end(axiom)

axiom
solve(D(y x, x)^2+y x=1,y,x)
There are no library operations named y Use HyperDoc Browse or issue )what op y to learn if there is any operation containing " y " in its name.
Cannot find a definition or applicable library operation named y with argument type(s) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0
There are no library operations named y Use HyperDoc Browse or issue )what op y to learn if there is any operation containing " y " in its name.
Cannot find a definition or applicable library operation named y with argument type(s) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. solve(deq, y, x)
There are 6 exposed and 1 unexposed library operations named solve having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named solve with argument type(s) Variable(deq) Variable(y) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
f(x)=x*2
There are no library operations named f Use HyperDoc Browse or issue )what op f to learn if there is any operation containing " f " in its name.
Cannot find a definition or applicable library operation named f with argument type(s) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D(y,x)
There are 5 exposed and 0 unexposed library operations named D having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named D with argument type(s) Variable(y) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. (x**2 + 1) * D(y, x, 2) + 3 * x * D(y, x) + y = 0
There are 3 exposed and 0 unexposed library operations named D having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named D with argument type(s) Variable(y) Variable(x) PositiveInteger
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
y := operator y

\label{eq108}y(108)
Type: BasicOperator?
axiom
solve(D(y(x),x)-y(x)^2=1,y,x)
There are 5 exposed and 0 unexposed library operations named D having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named D with argument type(s) Expression(Integer) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

Just trying to understand the syntax

axiom
solve(a*x^2+b*x+c,x)

\label{eq109}\left[{x = 0}\right](109)
Type: List(Equation(Expression(Integer)))

axiom
solve(a*x^2+b*x+c=0,x)
There are 18 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named solve with argument type(s) Equation(Equation(Expression(Integer))) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
zerosOf(a*x^2+b*x+c,x)
There are 2 exposed and 0 unexposed library operations named zerosOf having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op zerosOf to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named zerosOf with argument type(s) Equation(Expression(Integer)) Variable(x)
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
zerosOf(sqrt(h^2+a^2)-a=d,a)
There are 4 exposed and 1 unexposed library operations named sqrt having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op sqrt to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named sqrt with argument type(s) Equation(Expression(Integer))
Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
solve(x^2+x+1=98,x)

\label{eq110}\left[{{{x^2}+ x -{97}}= 0}\right](110)
Type: List(Equation(Fraction(Polynomial(Integer))))

axiom
solve(x^2+2*x+1=0,x)

\label{eq111}\left[{x = - 1}\right](111)
Type: List(Equation(Fraction(Polynomial(Integer))))

Solutions in Expression domain

axiom
solve((x^2+x+1=98)::Equation Expression Integer,x)

\label{eq112}\left[{x ={{{\sqrt{389}}- 1}\over 2}}, \:{x ={{-{\sqrt{389}}- 1}\over 2}}\right](112)
Type: List(Equation(Expression(Integer)))

axiom
solve((x^3 * b + x^2*(b*d - b + 1) + x*(3*d - b*d - 1) + 2*d^2 - 2*d = 0)::Equation Expression Integer, x)
Cannot convert from type Equation(Equation(Expression(Integer))) to Equation(Expression(Integer)) for value 3 2 2 L x + (L d - L + 1)x + ((- L + 3)d - 1)x + 2d - 2d = 3 2 +---+ 3 2 (- x + (- d + 1)x + d x)\|- 1 sin(x) + (x + (d - 1)x - d x)cos(x) + 2 2 x + (3d - 1)x + 2d - 2d = 0= 0