login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for SandBox2 revision 1 of 12

1 2 3 4 5 6 7 8 9 10 11 12
Editor:
Time: 2007/11/18 17:42:41 GMT-8
Note: cg

changed:
-
From unknown Thu Jun 23 12:02:22 -0500 2005
From: unknown
Date: Thu, 23 Jun 2005 12:02:22 -0500
Subject: Indefinite intregral
Message-ID: <20050623120222-0500@page.axiom-developer.org>

arctan = atan
\begin{axiom}
integrate(1/atan(x),x)
\end{axiom}

From unknown Fri Jun 24 04:13:42 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 04:13:42 -0500
Subject: test1
Message-ID: <20050624041342-0500@page.axiom-developer.org>

\begin{axiom}
integrate(1/(a+z^3), z=0..1,"noPole"); 
\end{axiom}

From unknown Fri Jun 24 06:22:10 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 06:22:10 -0500
Subject: test
Message-ID: <20050624062210-0500@page.axiom-developer.org>

\begin{axiom}
solve(cos(x)-y=-sin(x),x)
\end{axiom}

From unknown Fri Jun 24 06:23:17 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 06:23:17 -0500
Subject: test
Message-ID: <20050624062317-0500@page.axiom-developer.org>

\begin{axiom}
solve(cos(x)-y=-sin(x),y)
\end{axiom}

From unknown Fri Jun 24 06:28:51 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 06:28:51 -0500
Subject: test
Message-ID: <20050624062851-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]
\end{axiom}

From unknown Fri Jun 24 06:30:02 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 06:30:02 -0500
Subject: 
Message-ID: <20050624063002-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]
solve(A=0,y)
\end{axiom}

From unknown Fri Jun 24 08:26:31 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 08:26:31 -0500
Subject: test
Message-ID: <20050624082631-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
\end{axiom}

From unknown Fri Jun 24 08:27:02 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 08:27:02 -0500
Subject: test
Message-ID: <20050624082702-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
B(1)
\end{axiom}

From unknown Fri Jun 24 08:27:20 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 08:27:20 -0500
Subject: test
Message-ID: <20050624082720-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
B
\end{axiom}

From unknown Fri Jun 24 08:28:12 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 08:28:12 -0500
Subject: test
Message-ID: <20050624082812-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
B
\end{axiom}

From unknown Fri Jun 24 08:28:30 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 08:28:30 -0500
Subject: test
Message-ID: <20050624082830-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
B.1
\end{axiom}

From unknown Fri Jun 24 09:03:29 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:03:29 -0500
Subject: test
Message-ID: <20050624090329-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
v:=[[v11],[v12]]
A*v=B*v
\end{axiom}

From unknown Fri Jun 24 09:04:28 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:04:28 -0500
Subject: test
Message-ID: <20050624090428-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
v:=vector[[v11],[v12]]
\end{axiom}

From unknown Fri Jun 24 09:05:03 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:05:03 -0500
Subject: 
Message-ID: <20050624090503-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
v:=vector[v11,v12]
\end{axiom}

From unknown Fri Jun 24 09:14:17 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:14:17 -0500
Subject: test
Message-ID: <20050624091417-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
v:=matrix[[B.1],[B.2]]
\end{axiom}

From unknown Fri Jun 24 09:21:06 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:21:06 -0500
Subject: 
Message-ID: <20050624092106-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
\end{axiom}

From unknown Fri Jun 24 09:21:37 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:21:37 -0500
Subject: 
Message-ID: <20050624092137-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
a
b
\end{axiom}

From unknown Fri Jun 24 09:22:32 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:22:32 -0500
Subject: 
Message-ID: <20050624092232-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
a
b.2
\end{axiom}

From unknown Fri Jun 24 09:25:38 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:25:38 -0500
Subject: test
Message-ID: <20050624092538-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LA:=[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)]
\end{axiom}

From unknown Fri Jun 24 09:26:01 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:26:01 -0500
Subject: test
Message-ID: <20050624092601-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LA:=matrix[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)]
\end{axiom}

From unknown Fri Jun 24 09:26:56 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:26:56 -0500
Subject: test
Message-ID: <20050624092656-0500@page.axiom-developer.org>

\begin{axiom}
sqrt(-1)
\end{axiom}

From unknown Fri Jun 24 09:28:13 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:28:13 -0500
Subject: test
Message-ID: <20050624092813-0500@page.axiom-developer.org>

\begin{axiom}
LA:=matrix[sqrt(-1)*sin(x)]
\end{axiom}

From unknown Fri Jun 24 09:29:29 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:29:29 -0500
Subject: test
Message-ID: <20050624092929-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[cos(x)-L]
\end{axiom}

From unknown Fri Jun 24 09:30:07 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:30:07 -0500
Subject: test
Message-ID: <20050624093007-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[a,b]
\end{axiom}

From unknown Fri Jun 24 09:30:27 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:30:27 -0500
Subject: test
Message-ID: <20050624093027-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[a,b]]
\end{axiom}

From unknown Fri Jun 24 09:31:06 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:31:06 -0500
Subject: test
Message-ID: <20050624093106-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[a],[b]]
\end{axiom}

From unknown Fri Jun 24 09:31:51 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:31:51 -0500
Subject: test
Message-ID: <20050624093151-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[b]]
\end{axiom}

From unknown Fri Jun 24 09:33:03 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:33:03 -0500
Subject: test
Message-ID: <20050624093303-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)*cos(x)]]
\end{axiom}

From unknown Fri Jun 24 09:33:48 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:33:48 -0500
Subject: test
Message-ID: <20050624093348-0500@page.axiom-developer.org>

\begin{axiom}
LA:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
\end{axiom}

From unknown Fri Jun 24 09:34:09 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:34:09 -0500
Subject: test
Message-ID: <20050624093409-0500@page.axiom-developer.org>

\begin{axiom}
LAM:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
\end{axiom}

From unknown Fri Jun 24 09:34:25 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:34:25 -0500
Subject: test
Message-ID: <20050624093425-0500@page.axiom-developer.org>

\begin{axiom}
L:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
\end{axiom}

From unknown Fri Jun 24 09:36:42 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:36:42 -0500
Subject: test
Message-ID: <20050624093642-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
A*D
\end{axiom}

From unknown Fri Jun 24 09:38:09 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:38:09 -0500
Subject: test
Message-ID: <20050624093809-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
\end{axiom}

From unknown Fri Jun 24 09:39:10 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:39:10 -0500
Subject: test
Message-ID: <20050624093910-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1)*v
\end{axiom}

From unknown Fri Jun 24 09:40:05 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:40:05 -0500
Subject: test
Message-ID: <20050624094005-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
\end{axiom}

From unknown Fri Jun 24 09:41:41 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:41:41 -0500
Subject: test
Message-ID: <20050624094141-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v=D(1,1)3v,v11)
\end{axiom}

From unknown Fri Jun 24 09:42:09 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:42:09 -0500
Subject: test
Message-ID: <20050624094209-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v=D(1,1)*v,v11)
\end{axiom}

From unknown Fri Jun 24 09:43:05 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:43:05 -0500
Subject: test
Message-ID: <20050624094305-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v=D(1,1)*v
\end{axiom}

From unknown Fri Jun 24 09:43:57 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:43:57 -0500
Subject: test
Message-ID: <20050624094357-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v=D(1,1)*v,v11)
\end{axiom}

From unknown Fri Jun 24 09:45:02 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:45:02 -0500
Subject: test
Message-ID: <20050624094502-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v=D(1,1)*v,v)
\end{axiom}

From unknown Fri Jun 24 09:46:47 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:46:47 -0500
Subject: test
Message-ID: <20050624094647-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve((A-D(1,1))v=0,v)
\end{axiom}

From unknown Fri Jun 24 09:47:45 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:47:45 -0500
Subject: test
Message-ID: <20050624094745-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v=0
\end{axiom}

From unknown Fri Jun 24 09:48:26 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:48:26 -0500
Subject: test
Message-ID: <20050624094826-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v=0
\end{axiom}

From unknown Fri Jun 24 09:48:31 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:48:31 -0500
Subject: test
Message-ID: <20050624094831-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v=0
\end{axiom}

From unknown Fri Jun 24 09:48:48 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:48:48 -0500
Subject: test
Message-ID: <20050624094848-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v
\end{axiom}

From unknown Fri Jun 24 09:49:40 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:49:40 -0500
Subject: test
Message-ID: <20050624094940-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v
\end{axiom}

From unknown Fri Jun 24 09:52:33 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:52:33 -0500
Subject: test
Message-ID: <20050624095233-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v-D(1,1)*v=0,v(1,1))
\end{axiom}

From unknown Fri Jun 24 09:53:05 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:53:05 -0500
Subject: test
Message-ID: <20050624095305-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
solve(A*v-D(1,1)*v=0,v11)
\end{axiom}

From unknown Fri Jun 24 09:54:36 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 09:54:36 -0500
Subject: test
Message-ID: <20050624095436-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
v:=matrix[[v11],[v12]]
A*v
D(1,1)*v
A*v-D(1,1)*v
\end{axiom}


From unknown Fri Jun 24 18:16:40 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 18:16:40 -0500
Subject: wanna see
Message-ID: <20050624181640-0500@page.axiom-developer.org>

 \begin{axiom}
  x*x
  \end{axiom}

From unknown Fri Jun 24 18:24:13 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 18:24:13 -0500
Subject: 
Message-ID: <20050624182413-0500@page.axiom-developer.org>

A*v


From unknown Fri Jun 24 18:24:38 -0500 2005
From: unknown
Date: Fri, 24 Jun 2005 18:24:38 -0500
Subject: 
Message-ID: <20050624182438-0500@page.axiom-developer.org>

\begin{axiom}
  A*v
  \end{axiom}

From billpage Fri Jun 24 23:36:38 -0500 2005
From: billpage
Date: Fri, 24 Jun 2005 23:36:38 -0500
Subject: My favorite equation
Message-ID: <20050624233638-0500@page.axiom-developer.org>

$$
e^{i\ \pi}=-1
$$

From unknown Mon Jun 27 13:28:12 -0500 2005
From: unknown
Date: Mon, 27 Jun 2005 13:28:12 -0500
Subject: DONTKNOWMYSELF
Message-ID: <20050627132812-0500@page.axiom-developer.org>

\begin{axiom}
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
\end{axiom}

From unknown Thu Jun 30 02:46:08 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 02:46:08 -0500
Subject: 
Message-ID: <20050630024608-0500@page.axiom-developer.org>

solve(cos(x)=0,x)

From unknown Thu Jun 30 02:46:47 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 02:46:47 -0500
Subject: 
Message-ID: <20050630024647-0500@page.axiom-developer.org>

\begin{axiom}
solve(cos(x)-y=-sin(x),x)
\end{axiom}

From unknown Thu Jun 30 02:47:28 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 02:47:28 -0500
Subject: 
Message-ID: <20050630024728-0500@page.axiom-developer.org>

\begin{axiom}
solve(cos(x)=0,x)
\end{axiom}

From unknown Thu Jun 30 15:06:13 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 15:06:13 -0500
Subject: 
Message-ID: <20050630150613-0500@page.axiom-developer.org>

solve(sin(e) - e = 0, e)


From unknown Thu Jun 30 15:07:05 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 15:07:05 -0500
Subject: solve(sin(e) - e = 0, e)
Message-ID: <20050630150705-0500@page.axiom-developer.org>



From unknown Thu Jun 30 15:08:18 -0500 2005
From: unknown
Date: Thu, 30 Jun 2005 15:08:18 -0500
Subject: 
Message-ID: <20050630150818-0500@page.axiom-developer.org>

\begin{axiom}
solve(sin(e) - e = 0, e)
\end{axiom}

From unknown Fri Jul 1 08:04:26 -0500 2005
From: unknown
Date: Fri, 01 Jul 2005 08:04:26 -0500
Subject: test1
Message-ID: <20050701080426-0500@page.axiom-developer.org>
In-Reply-To: <20050624041342-0500@page.axiom-developer.org>

solve(a*cos(t1) + b*sin(t1) = c, t1)

From unknown Sat Jul 2 05:58:11 -0500 2005
From: unknown
Date: Sat, 02 Jul 2005 05:58:11 -0500
Subject: 
Message-ID: <20050702055811-0500@page.axiom-developer.org>

\begin{axiom}
solve(a*cos(t1) + b*sin(t1) = c, t1)
\end{axiom}

From unknown Sun Jul 3 17:03:37 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:03:37 -0500
Subject: tst
Message-ID: <20050703170337-0500@page.axiom-developer.org>

solve(D(y x, x)^2+y x=1,y,x)

From unknown Sun Jul 3 17:04:48 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:04:48 -0500
Subject: tst2
Message-ID: <20050703170448-0500@page.axiom-developer.org>

\begin(axiom)
solve(D(y x, x)^2+y x=1,y,x)
\end(axiom)

From unknown Sun Jul 3 17:08:08 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:08:08 -0500
Subject: tst3
Message-ID: <20050703170808-0500@page.axiom-developer.org>

x*x

From unknown Sun Jul 3 17:10:42 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:10:42 -0500
Subject: tst4
Message-ID: <20050703171042-0500@page.axiom-developer.org>

\begin{axiom}
solve(D(y x, x)^2+y x=1,y,x)
\end{axiom}

From unknown Sun Jul 3 17:12:39 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:12:39 -0500
Subject: 
Message-ID: <20050703171239-0500@page.axiom-developer.org>

\begin{axiom}
deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0
solve(deq, y, x)
\end{axiom}

From unknown Sun Jul 3 17:17:19 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:17:19 -0500
Subject: 
Message-ID: <20050703171719-0500@page.axiom-developer.org>

\begin{axiom}
f(x)=x*2
D(y,x)
(x**2 + 1) * D(y, x, 2) + 3 * x * D(y, x) + y = 0
\end{axiom}

From unknown Sun Jul 3 17:26:34 -0500 2005
From: unknown
Date: Sun, 03 Jul 2005 17:26:34 -0500
Subject: tst5
Message-ID: <20050703172634-0500@page.axiom-developer.org>

\begin{axiom}
y := operator y
solve(D(y(x),x)-y(x)^2=1,y,x)
\end{axiom}


From unknown Thu Jul 14 12:59:13 -0500 2005
From: unknown
Date: Thu, 14 Jul 2005 12:59:13 -0500
Subject: 
Message-ID: <20050714125913-0500@page.axiom-developer.org>

Just trying to understand the syntax
\begin{axiom}
solve(a*x^2+b*x+c,x)
\end{axiom}


From unknown Thu Jul 14 13:08:54 -0500 2005
From: unknown
Date: Thu, 14 Jul 2005 13:08:54 -0500
Subject: 
Message-ID: <20050714130854-0500@page.axiom-developer.org>

\begin{axiom}
solve(a*x^2+b*x+c=0,x)
\end{axiom}


From unknown Thu Jul 14 13:11:59 -0500 2005
From: unknown
Date: Thu, 14 Jul 2005 13:11:59 -0500
Subject: 
Message-ID: <20050714131159-0500@page.axiom-developer.org>

\begin{axiom}
zerosOf(a*x^2+b*x+c,x)
\end{axiom}


From unknown Thu Jul 14 13:14:35 -0500 2005
From: unknown
Date: Thu, 14 Jul 2005 13:14:35 -0500
Subject: 
Message-ID: <20050714131435-0500@page.axiom-developer.org>

\begin{axiom}
zerosOf(sqrt(h^2+a^2)-a=d,a)
\end{axiom}


From unknown Fri Dec 30 14:25:06 -0600 2005
From: unknown
Date: Fri, 30 Dec 2005 14:25:06 -0600
Subject: pokus
Message-ID: <20051230142506-0600@wiki.axiom-developer.org>

    \begin{axiom}
    integrate(1/(a+z^3), z=0..1,"noPole")
    \end{axiom}

From BillPage Tue Jan 10 08:30:42 -0600 2006
From: Bill Page
Date: Tue, 10 Jan 2006 08:30:42 -0600
Subject: 
Message-ID: <20060110083042-0600@wiki.axiom-developer.org>

\begin{axiom}
integrate(a/(b+z^2),z=0..1,"noPole")
\end{axiom}


From mikee Thu Feb 8 10:26:51 -0600 2007
From: mikee
Date: Thu, 08 Feb 2007 10:26:51 -0600
Subject: solve
Message-ID: <20070208102651-0600@wiki.axiom-developer.org>

\begin{axiom}
solve(x^2+x+1=98,x)
\end{axiom} 


From mikee Thu Feb 8 11:12:29 -0600 2007
From: mikee
Date: Thu, 08 Feb 2007 11:12:29 -0600
Subject: solve
Message-ID: <20070208111229-0600@wiki.axiom-developer.org>

\begin{axiom}
solve(x^2+2*x+1=0,x)
\end{axiom} 


From BillPage Thu Feb 8 11:50:51 -0600 2007
From: Bill Page
Date: Thu, 08 Feb 2007 11:50:51 -0600
Subject: solution in Expression domain
Message-ID: <20070208115051-0600@wiki.axiom-developer.org>

\begin{axiom}
solve((x^2+x+1=98)::Equation Expression Integer,x)
\end{axiom}

From aidscher Fri Jun 1 12:08:38 -0500 2007
From: aidscher
Date: Fri, 01 Jun 2007 12:08:38 -0500
Subject: cg
Message-ID: <20070601120838-0500@wiki.axiom-developer.org>

\begin{axiom}
solve((x^3 * b + x^2*(b*d - b + 1) + x*(3*d - b*d - 1) + 2*d^2 - 2*d = 0)::Equation Expression Integer, x)
\end{axiom} 

Indefinite intregral --unknown, Thu, 23 Jun 2005 12:02:22 -0500 reply
arctan = atan
axiom
integrate(1/atan(x),x)
LatexWiki Image(1)
Type: Union(Expression Integer,...)

axiom
integrate(1/(a+z^3), z=0..1,"noPole");
Type: Union(f1: OrderedCompletion? Expression Integer,...)

axiom
solve(cos(x)-y=-sin(x),x)
LatexWiki Image(2)
Type: List Equation Expression Integer

axiom
solve(cos(x)-y=-sin(x),y)
LatexWiki Image(3)
Type: List Equation Expression Integer

axiom
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]
LatexWiki Image(4)
Type: Matrix Expression Integer

axiom
A:=matrix[[cos(x)-y,-sin(x)],[sin(x),cos(x)-y]]
LatexWiki Image(5)
Type: Matrix Expression Integer
axiom
solve(A=0,y) There are 18 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named solve with argument type(s) Equation SquareMatrix(2,Expression Integer) Variable y Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(6)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(7)
Type: List Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(8)
Type: Matrix Expression Integer
axiom
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(9)
Type: Equation List Equation Expression Integer
axiom
B(1)
LatexWiki Image(10)
Type: Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(11)
Type: Matrix Expression Integer
axiom
B=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(12)
Type: Equation List Equation Expression Integer
axiom
B
LatexWiki Image(13)
Type: List Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(14)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(15)
Type: List Equation Expression Integer
axiom
B
LatexWiki Image(16)
Type: List Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(17)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(18)
Type: List Equation Expression Integer
axiom
B.1
LatexWiki Image(19)
Type: Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(20)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(21)
Type: List Equation Expression Integer
axiom
v:=[[v11],[v12]]
LatexWiki Image(22)
Type: List List Symbol
axiom
A*v=B*v There are 34 exposed and 23 unexposed library operations named * having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op * to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named * with argument type(s) List Equation Expression Integer List List Symbol Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(23)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(24)
Type: List Equation Expression Integer
axiom
v:=vector[[v11],[v12]]
LatexWiki Image(25)
Type: Vector List Symbol

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(26)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(27)
Type: List Equation Expression Integer
axiom
v:=vector[v11,v12]
LatexWiki Image(28)
Type: Vector OrderedVariableList? [v11,v12]?

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(29)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(30)
Type: List Equation Expression Integer
axiom
v:=matrix[[B.1],[B.2]]
LatexWiki Image(31)
Type: Matrix Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(32)
Type: Matrix Expression Integer
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(33)
Type: List Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(34)
Type: Matrix Expression Integer
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(35)
Type: List Equation Expression Integer
axiom
a
LatexWiki Image(36)
Type: Equation Expression Integer
axiom
b
LatexWiki Image(37)
Type: Equation Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(38)
Type: Matrix Expression Integer
axiom
[a,b]:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(39)
Type: List Equation Expression Integer
axiom
a
LatexWiki Image(40)
Type: Equation Expression Integer
axiom
b.2 There are no library operations named b Use HyperDoc Browse or issue )what op b to learn if there is any operation containing " b " in its name. Cannot find a definition or applicable library operation named b with argument type(s) PositiveInteger Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(41)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(42)
Type: List Equation Expression Integer
axiom
LA:=[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)] You have used the abbreviation LA of the constructor LocalAlgebra on the left-hand side of an assignment expression. This is not allowed.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]]
LatexWiki Image(43)
Type: Matrix Expression Integer
axiom
B:=solve(A(1,1)*A(2,2)-A(2,1)*A(1,2)=0,L)
LatexWiki Image(44)
Type: List Equation Expression Integer
axiom
LA:=matrix[sqrt(-1)*sin(x)+cos(x),-sqrt(-1)*sin(x)+cos(x)] You have used the abbreviation LA of the constructor LocalAlgebra on the left-hand side of an assignment expression. This is not allowed.

axiom
sqrt(-1)
LatexWiki Image(45)
Type: AlgebraicNumber?

axiom
LA:=matrix[sqrt(-1)*sin(x)] You have used the abbreviation LA of the constructor LocalAlgebra on the left-hand side of an assignment expression. This is not allowed.

axiom
A:=matrix[cos(x)-L]
LatexWiki Image(46)
Type: Symbol

axiom
A:=matrix[a,b]
LatexWiki Image(47)
Type: Symbol

axiom
A:=matrix[[a,b]]
LatexWiki Image(48)
Type: Matrix Equation Expression Integer

axiom
A:=matrix[[a],[b]]
LatexWiki Image(49)
Type: Matrix Equation Expression Integer

axiom
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[b]]
LatexWiki Image(50)
Type: Symbol

axiom
A:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)*cos(x)]]
LatexWiki Image(51)
Type: Matrix Expression Integer

axiom
LA:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]] You have used the abbreviation LA of the constructor LocalAlgebra on the left-hand side of an assignment expression. This is not allowed.

axiom
LAM:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(52)
Type: Matrix Expression Integer

axiom
L:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(53)
Type: Matrix Expression Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(54)
Type: Matrix Expression Integer
axiom
A*D >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(55)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(56)
Type: Matrix Polynomial Integer

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(57)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(58)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(59)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(60)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(61)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(62)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(63)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(64)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(65)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(66)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(67)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(68)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(69)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(70)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(71)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(72)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(73)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(74)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(75)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(76)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(77)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(78)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(79)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(80)
Type: Matrix Polynomial Integer
axiom
A*v >> Error detected within library code: can't multiply matrices of incompatible dimensions

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(81)
Type: Matrix Expression Integer
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(82)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(83)
Type: Matrix Polynomial Integer
axiom
A*v
LatexWiki Image(84)
Type: Matrix Expression Integer
axiom
D(1,1)*v
LatexWiki Image(85)
Type: Matrix Expression Integer
axiom
A*v-D(1,1)*v
LatexWiki Image(86)
Type: Matrix Expression Integer

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(87)
Type: Matrix Expression Integer
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(88)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(89)
Type: Matrix Polynomial Integer
axiom
A*v
LatexWiki Image(90)
Type: Matrix Expression Integer
axiom
D(1,1)*v
LatexWiki Image(91)
Type: Matrix Expression Integer
axiom
solve(A*v-D(1,1)*v=0,v(1,1)) There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named equation with argument type(s) Matrix Expression Integer NonNegativeInteger Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(92)
Type: Matrix Expression Integer
axiom
D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(93)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(94)
Type: Matrix Polynomial Integer
axiom
A*v
LatexWiki Image(95)
Type: Matrix Expression Integer
axiom
D(1,1)*v
LatexWiki Image(96)
Type: Matrix Expression Integer
axiom
solve(A*v-D(1,1)*v=0,v11) There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named equation with argument type(s) Matrix Expression Integer NonNegativeInteger Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
A:=matrix[[cos(x)-L,-sin(x)],[sin(x),cos(x)-L]] There are 8 exposed and 3 unexposed library operations named - having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op - to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named - with argument type(s) Expression Integer Matrix Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D:=matrix[[sqrt(-1)*sin(x)+cos(x)],[-sqrt(-1)*sin(x)+cos(x)]]
LatexWiki Image(97)
Type: Matrix Expression Integer
axiom
v:=matrix[[v11],[v12]]
LatexWiki Image(98)
Type: Matrix Polynomial Integer
axiom
A*v
LatexWiki Image(99)
Type: Matrix Expression Integer
axiom
D(1,1)*v
LatexWiki Image(100)
Type: Matrix Expression Integer
axiom
A*v-D(1,1)*v
LatexWiki Image(101)
Type: Matrix Expression Integer

axiom
x*x
LatexWiki Image(102)
Type: Polynomial Integer

A*v

axiom
A*v
LatexWiki Image(103)
Type: Matrix Expression Integer

My favorite equation --billpage, Fri, 24 Jun 2005 23:36:38 -0500 reply
LatexWiki Image 

DONTKNOWMYSELF --unknown, Mon, 27 Jun 2005 13:28:12 -0500 reply
axiom
A:=matrix[[cos(x),-sin(x)],[sin(x),cos(x)]]
LatexWiki Image(104)
Type: Matrix Expression Integer

solve(cos(x)=0,x)

axiom
solve(cos(x)-y=-sin(x),x)
LatexWiki Image(105)
Type: List Equation Expression Integer

axiom
solve(cos(x)=0,x)
LatexWiki Image(106)
Type: List Equation Expression Integer

solve(sin(e) - e = 0, e)

solve(sin(e) - e = 0, e) --unknown, Thu, 30 Jun 2005 15:07:05 -0500 reply

axiom
solve(sin(e) - e = 0, e)
LatexWiki Image(107)
Type: List Equation Expression Integer

solve(acos(t1) + bsin(t1) = c, t1)

axiom
solve(a*cos(t1) + b*sin(t1) = c, t1) There are 3 exposed and 0 unexposed library operations named equation having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op equation to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named equation with argument type(s) Equation Expression Integer Variable c Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

solve(D(y x, x)^2+y x=1,y,x)

\begin(axiom) solve(D(y x, x)^2+y x=1,y,x) \end(axiom)

x*x

axiom
solve(D(y x, x)^2+y x=1,y,x) There are no library operations named y Use HyperDoc Browse or issue )what op y to learn if there is any operation containing " y " in its name. Cannot find a definition or applicable library operation named y with argument type(s) Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
deq := (x**2 + 1) * D(y x, x, 2) + 3 * x * D(y x, x) + y x = 0 There are no library operations named y Use HyperDoc Browse or issue )what op y to learn if there is any operation containing " y " in its name. Cannot find a definition or applicable library operation named y with argument type(s) Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. solve(deq, y, x) There are 6 exposed and 1 unexposed library operations named solve having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named solve with argument type(s) Variable deq Variable y Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
f(x)=x*2 There are no library operations named f Use HyperDoc Browse or issue )what op f to learn if there is any operation containing " f " in its name. Cannot find a definition or applicable library operation named f with argument type(s) Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. D(y,x) There are 5 exposed and 0 unexposed library operations named D having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named D with argument type(s) Variable y Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need. (x**2 + 1) * D(y, x, 2) + 3 * x * D(y, x) + y = 0 There are 3 exposed and 0 unexposed library operations named D having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named D with argument type(s) Variable y Variable x PositiveInteger Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
y := operator y
LatexWiki Image(108)
Type: BasicOperator?
axiom
solve(D(y(x),x)-y(x)^2=1,y,x) There are 5 exposed and 0 unexposed library operations named D having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op D to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named D with argument type(s) Expression Integer Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

Just trying to understand the syntax
axiom
solve(a*x^2+b*x+c,x)
LatexWiki Image(109)
Type: List Equation Expression Integer

axiom
solve(a*x^2+b*x+c=0,x) There are 18 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named solve with argument type(s) Equation Equation Expression Integer Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
zerosOf(a*x^2+b*x+c,x) There are 2 exposed and 0 unexposed library operations named zerosOf having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op zerosOf to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named zerosOf with argument type(s) Equation Expression Integer Variable x Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
zerosOf(sqrt(h^2+a^2)-a=d,a) There are 4 exposed and 1 unexposed library operations named sqrt having 1 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op sqrt to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named sqrt with argument type(s) Equation Expression Integer Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
integrate(1/(a+z^3), z=0..1,"noPole") There are 4 exposed and 1 unexposed library operations named integrate having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op integrate to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named integrate with argument type(s) Equation Expression Integer SegmentBinding NonNegativeInteger String Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
integrate(a/(b+z^2),z=0..1,"noPole") There are 4 exposed and 1 unexposed library operations named integrate having 3 argument(s) but none was determined to be applicable. Use HyperDoc Browse, or issue )display op integrate to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation. Cannot find a definition or applicable library operation named integrate with argument type(s) Equation Expression Integer SegmentBinding NonNegativeInteger String Perhaps you should use "@" to indicate the required return type, or "$" to specify which version of the function you need.

axiom
solve(x^2+x+1=98,x)
LatexWiki Image(110)
Type: List Equation Fraction Polynomial Integer

axiom
solve(x^2+2*x+1=0,x)
LatexWiki Image(111)
Type: List Equation Fraction Polynomial Integer

solution in Expression domain --Bill Page, Thu, 08 Feb 2007 11:50:51 -0600 reply
axiom
solve((x^2+x+1=98)::Equation Expression Integer,x)
LatexWiki Image(112)
Type: List Equation Expression Integer

axiom
solve((x^3 * b + x^2*(b*d - b + 1) + x*(3*d - b*d - 1) + 2*d^2 - 2*d = 0)::Equation Expression Integer, x) Cannot convert from type Equation Equation Expression Integer to Equation Expression Integer for value 3 2 2 L x + (L d - L + 1)x + ((- L + 3)d - 1)x + 2d - 2d = 3 2 +---+ 3 2 (- x + (- d + 1)x + d x)\|- 1 sin(x) + (x + (d - 1)x - d x)cos(x) + 2 2 x + (3d - 1)x + 2d - 2d = 0= 0