|
1
|
|
Editor: Bill Page
Time: 2007/09/12 12:23:06 GMT-7
|
Note:
|
changed:
-
<H2><A NAME="htoc18">Appendix B</A> Examples</H2>
Polynomials, rational functions:
\begin{reduce}
coeff(X**3 + 3*X**2*Y + 3*X*Y**2 + Y**3,x);
gcd(X**2 + 4*X + 3,X**2 - 2*X - 3);
resultant(X**2 + 4*X + 3,X**2 - 2*X - 3,x);
decompose(x**6+6x**4+x**3+9x**2+3x-5);
factorize(x**6+6x**4+x**3+9x**2+3x);
roots(x**6+6x**4+x**3+9x**2+3x-5);
interpol({0,7,26,63},z,{1,2,3,4});
\end{reduce}
partial fraction decomposition:
\begin{reduce}
pf(2/((x+1)^2*(x+2)),x);
\end{reduce}
Matrices:
\begin{reduce}
m:=mat((1,x),(2,y));
1/m;
det m;
\end{reduce}
Ordinary differential equations:
\begin{reduce}
load odesolve;
odesolve(df(y(x),x)=y(x)+x**2+2,y(x),x);
\end{reduce}
Linear system (hidden):
\begin{reduce}
solve({(a*x+y)/(z-1)-3,y+b+z,x-y},
{x,y,z});
\end{reduce}
Transcendental equations:
\begin{reduce}
solve(a**(2*x)-3*a**x+2,x);
\end{reduce}
Polynomial systems:
\begin{reduce}
solve(
{ a*c1 - b*c1**2 - g*c1*c2 + e*c3,
-g*c1*c2 + (e+t)*c3 -k*c2,
g*c1*c2 + k*c2 - (e+t) * c3},
{c3,c2,c1});
\end{reduce}
Structural analysis:
\begin{reduce}
load_package compact;
compact(s*(1-(sin x**2))
+c*(1-(cos x)**2)
+(sin x)**2+(cos x)**2,
{cos x^2+sin x^2=1});
\end{reduce}
Calculus:
\begin{reduce}
df(exp(x**2)/x,x,2);
int(x^3*exp(2x),x);
limit(x*sin(1/x),x,infinity);
\end{reduce}
Series:
\begin{reduce}
on rounded;
taylor(sin(x+1),x,0,4);
sum(n,n);
prod(n/(n+2),n);
\end{reduce}
Complex numbers:
\begin{reduce}
w:=(x+3*i)**2;
\end{reduce}
Rounded numbers:
\begin{reduce}
precision 25;
pi**2;
\end{reduce}
Modular numbers:
\begin{reduce}
on modular;
setmod 17;
(x-1)**2;
factorize ws;
\end{reduce}
Polynomials, rational functions:
coeff(X**3 + 3*X**2*Y + 3*X*Y**2 + Y**3,x); | reduce |
gcd(X**2 + 4*X + 3,X**2 - 2*X - 3); | reduce |
resultant(X**2 + 4*X + 3,X**2 - 2*X - 3,x); | reduce |
decompose(x**6+6x**4+x**3+9x**2+3x-5); | reduce |
factorize(x**6+6x**4+x**3+9x**2+3x); | reduce |
roots(x**6+6x**4+x**3+9x**2+3x-5); | reduce |
interpol({0,7,26,63},z,{1,2,3,4}); | reduce |
partial fraction decomposition:
pf(2/((x+1)^2*(x+2)),x); | reduce |
Matrices:
m:=mat((1,x),(2,y)); | reduce |
Ordinary differential equations:
load odesolve;
odesolve(df(y(x),x)=y(x)+x**2+2,y(x),x);
*** y declared operator | reduce |
Linear system (hidden):
solve({(a*x+y)/(z-1)-3,y+b+z,x-y},
{x,y,z}); | reduce |
Transcendental equations:
solve(a**(2*x)-3*a**x+2,x); | reduce |
Polynomial systems:
solve(
{ a*c1 - b*c1**2 - g*c1*c2 + e*c3,
-g*c1*c2 + (e+t)*c3 -k*c2,
g*c1*c2 + k*c2 - (e+t) * c3},
{c3,c2,c1}); | reduce |
Structural analysis:
load_package compact;
compact(s*(1-(sin x**2))
+c*(1-(cos x)**2)
+(sin x)**2+(cos x)**2,
{cos x^2+sin x^2=1}); | reduce |
Calculus:
df(exp(x**2)/x,x,2); | reduce |
int(x^3*exp(2x),x); | reduce |
limit(x*sin(1/x),x,infinity); | reduce |
Series:
on rounded;
taylor(sin(x+1),x,0,4); | reduce |
Complex numbers:
Rounded numbers:
Modular numbers:
on modular;
*** Domain mode rounded changed to modular
setmod 17; | reduce |