login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for Octonion Algebra is Frobenius in Just One Way revision 3 of 8

1 2 3 4 5 6 7 8
Editor: Bill Page
Time: 2011/04/26 23:18:03 GMT-7
Note: update

changed:
-Octonion Algebra is Frobenius in just one way!
-
-  8-dimensional vector space representing Octonion Algebra
-
-\begin{axiom}
-)set output tex off
-)set output algebra on
-\end{axiom}
Octonion Algebra Is Frobenius In Just One Way

Linear operators over a 8-dimensional vector space representing octonnion algebra

Ref:

- http://arxiv.org/abs/1103.5113

  $S_3$-permuted Frobenius Algebras

  *Zbigniew Oziewicz (UNAM), Gregory Peter Wene (UTSA)*

- http://mat.uab.es/~kock/TQFT.html

  Frobenius algebras and 2D topological quantum field theories

  *Joachim Kock*

- http://en.wikipedia.org/wiki/Frobenius_algebra

We need the Axiom LinearOperator library.
\begin{axiom}
)library CARTEN MONAL PROP LIN CALEY
\end{axiom}

Use the following macros for convenient notation
\begin{axiom}
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
-- list
macro Ξ(f,i,n)==[f for i in n]
-- subscript
macro sb == subscript
\end{axiom}

𝐋 is the domain of 8-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

changed:
-R ==> EXPR INT
-T ==> CartesianTensor(1,dim,EXPR INT)
-X:List T := [unravel [(i=j => 1;0) for j in 1..dim] for i in 1..dim]
-X(1),X(2)
-\end{axiom}
-
-Generate structure constants for Octonion Algebra (the Caley-Dickson way)
-\begin{axiom}
-Q ==> Quaternion R
-O ==> DirectProduct(2,Q)
-B0:=map(x+->octon(x.1,x.2,x.3,x.4,x.5,x.6,x.7,x.8),1$SQMATRIX(dim,R)::List List R)
-pair(x:Q,y:Q):O==directProduct vector [x,y]
-caleyOne:=pair(1,0)
-B:=map(x+->pair(quatern(x.1,x.2,x.3,x.4),quatern(x.5,x.6,x.7,x.8)),1$SQMATRIX(dim,R)::List List R)
-\end{axiom}
-\begin{axiom}
-caleyMul(x:O,y:O):O == pair((x.1)*(y.1) - conjugate(y.2)*(x.2), (y.2)*(x.1) + (x.2)*conjugate(y.1))
-caleyMul(caleyOne,caleyOne)
-M0:=matrix [[B0.i*B0.j for j in 1..dim] for i in 1..dim]  
-M:=matrix [[caleyMul(B.i,B.j) for j in 1..dim] for i in 1..dim]
-\end{axiom}
-\begin{axiom}
-caleyConj(x:O):O == pair(conjugate(x.1), -x.2)
-caleyInv(x:O):O == inv(caleyMul(caleyConj x,x).1) * caleyConj(x)
-S0(y)==map(x+->(x*inv(y)=1 or x*inv(y)=-1 => x*inv(y);0),M0)
-S0(B0.1)
-S(y)==map(x+->(caleyMul(x,caleyInv y)=caleyOne => 1;caleyMul(x,caleyInv y)=-caleyOne => -1;0),M)
-S(B.1)
-Yg0:T:=unravel concat concat(map(S0,B0)::List List List R);
-Yg:T:=unravel concat concat(map(S,B)::List List List R)
-test(Yg0=Yg)
-\end{axiom}
macro ℒ == List
macro ℂ == CaleyDickson
macro ℚ == Expression Integer
𝐋 := LinearOperator(dim, OVAR [], ℚ)
𝐞:ℒ 𝐋      := basisVectors()
𝐝:ℒ 𝐋      := basisForms()
o:𝐋:=1;     -- identity for product
I:𝐋:=[1];   -- identity for composition
X:𝐋:=[2,1]; -- twist
\end{axiom}

Now generate structure constants for Octonion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex, co-quaternions and split-octonions can be specified by Caley-Dickson parameters
\begin{axiom}
--q0:=sb('q,[0])
q0:=1  -- not split-complex
--q1:=sb('q,[1])
q1:=1  -- not co-quaternion
q2:=sb('q,[2])
--q2:=1  -- split-octonion
QQ := ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2);
\end{axiom}

Basis: Each B.i is a octonion number
\begin{axiom}
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real real(x/y),M)
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)
arity Y
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)
\end{axiom}

changed:
-U:T := unravel(concat
-  [[script(u,[[],[j,i]])
-    for i in 1..dim]
-      for j in 1..dim]
-        )
-\end{axiom}
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)
\end{axiom}


changed:
-  In other words, if the (3,0)-tensor::
-
-    i  j  k   i  j  k   i  j  k
-     \ | /     \/  /     \  \/
-      \|/   =   \ /   -   \ /
-       0         0         0
  In other words, if the (3,0)-tensor:
$$
\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
$$

changed:
-\begin{axiom}
-ω := reindex(reindex(U,[2,1])*reindex(Yg,[1,3,2]),[3,2,1])-U*Yg;
-\end{axiom}
Using the LinearOperator domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

\begin{axiom}
ω:𝐋 :=(Y*I)/U  - (I*Y)/U;
\end{axiom}

Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.


changed:
-  is called *pre-Frobenius*.
  is called a [Frobenius Algebra].

added:


changed:
-J := jacobian(ravel ω,concat(map(variables,ravel U))::List Symbol);
-uu := transpose matrix [concat(map(variables,ravel(U)))::List Symbol];
-J::OutputForm * uu::OutputForm = 0;
-nrows(J)
-ncols(J)
-\end{axiom}
J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
J::OutputForm * u::OutputForm = 0
nrows(J),ncols(J)
\end{axiom}


changed:
-\begin{axiom}
-NJ:=nullSpace(J)
-SS:=map((x,y)+->x=y,concat map(variables,ravel U),
-  entries reduce(+,[p[i]*NJ.i for i in 1..#NJ]))
-Ug:T := unravel(map(x+->subst(x,SS),ravel U))
-\end{axiom}
-
-This defines a family of pre-Frobenius algebras:
-\begin{axiom}
-test(unravel(map(x+->subst(x,SS),ravel ω))$T=0*ω)
-\end{axiom}

\begin{axiom}
Ñ:=nullSpace(J);
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )
\end{axiom}

This defines a family of Frobenius algebras:
\begin{axiom}
zero? eval(ω,ℰ)
\end{axiom}

In general the pairing is not symmetric!
\begin{axiom}
Ų:𝐋 := eval(U,ℰ)
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)
\end{axiom}

This is the most general form of the "dot product" of two quaternions
\begin{axiom}
(a*b)/Ų
(a*a)/Ų
\end{axiom}

changed:
-Ud:DMP([p[i] for i in 1..#NJ],INT) := determinant [[Ug[i,j] for j in 1..dim] for i in 1..dim]
-factor Ud
-\end{axiom}
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)
factor Ů
\end{axiom}

changed:
-\begin{axiom}
-Ωg:T:=unravel concat(transpose(1/Ud*adjoint([[Ug[i,j] for j in 1..dim] for i in 1..dim]).adjMat)::List List FRAC POLY INT)
-\end{axiom}
-<center><pre>
-dimension
-Ω
-U
-</pre></center>
-\begin{axiom}
-contract(contract(Ωg,1,Ug,1),1,2)
-\end{axiom}

Solve the [Snake Relation] as a system of linear equations.
\begin{axiom}
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim)
mU:=transpose inverse map(retract,Um)
Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)
\end{axiom}

Check "dimension" and the snake relations.
\begin{axiom}

d:𝐋:=
    o   Ω    /
    o   X    /
    o   Ų    o

test
    (    I Ω     )  /
    (     Ų I    )  =  I

test
    (     Ω I    )  /
    (    I Ų     )  =  I

\end{axiom}

changed:
-  Co-multiplication
-\begin{axiom}
-λg:=reindex(contract(contract(Ug*Yg,1,Ωg,1),1,Ωg,1),[2,3,1]);
--- just for display
-reindex(λg,[3,1,2])
-\end{axiom}
-<center><pre>
-i  
-λ=Ω
-</pre></center>
-\begin{axiom}
-test(λg*X(1)=Ωg)
-\end{axiom}
  Co-algebra

This expression is expensive to compute::

    λ:𝐋 :=
         o    Ω Ω  I    /
         o   I Y I I    /
         o   I  X  I    /
         o   I I  Ų     o

\begin{axiom}

λ:𝐋 :=
     (    I Ω     )  /
     (     Y I    )

test
     (     Ω I    )  /
     (    I Y     )  =  λ

\end{axiom}

Frobenius Condition

  It takes to long to computer here but it turns out that Octonion
algebra fails the Frobenius Condition::

  !\begin{axiom}

  Χ :=
         Y    /
         λ

  test
     (   λ I   )  /
     (  I Y    )  =  Χ

  test
     (   I λ   )  /
     (    Y I  )  =  Χ

  \end{axiom}

Perhaps this is not surprising since Octonion algebra is not
associative. Nevertheless it is "Frobenius" in a more general
sense because there is a non-degenerate associative pairing
and co-pairing.

i = Unit of the algebra
\begin{axiom}
i:=𝐞.1
test
     o    i     /
     o    λ     =    Ω

\end{axiom}

Handle
\begin{axiom}

H:𝐋 :=
     o    λ    o /
     o    Y    o

\end{axiom}

changed:
-ιg:=X(1)*Ug

ι:𝐋:=
    o    i I    /
    o     Ų    o


changed:
-test(ιg * Yg = Ug)
-\end{axiom}
test
   o     Y     /
   o     ι     o  = Ų

\end{axiom}

changed:
-Ug0:T:=unravel eval(ravel Ug,[p[1]=1])
-Ωg0:T:=unravel eval(ravel Ωg,[p[1]=1])
-λg0:T:=unravel eval(ravel λg,[p[1]=1]);
-reindex(λg0,[3,1,2])
-\end{axiom}
ex1:=[q[2]=1,p[1]=1]
Ų0:𝐋  :=eval(Ų,ex1)
Ω0:𝐋  :=eval(Ω,ex1)$𝐋
λ0:𝐋  :=eval(λ,ex1)$𝐋
H0:𝐋 :=eval(H,ex1)$𝐋
\end{axiom}

Octonion Algebra Is Frobenius In Just One Way

Linear operators over a 8-dimensional vector space representing octonnion algebra

Ref:

We need the Axiom LinearOperator? library.

axiom
)library CARTEN MONAL PROP LIN CALEY
CartesianTensor is now explicitly exposed in frame initial CartesianTensor will be automatically loaded when needed from /var/zope2/var/LatexWiki/CARTEN.NRLIB/CARTEN Monoidal is now explicitly exposed in frame initial Monoidal will be automatically loaded when needed from /var/zope2/var/LatexWiki/MONAL.NRLIB/MONAL Prop is now explicitly exposed in frame initial Prop will be automatically loaded when needed from /var/zope2/var/LatexWiki/PROP.NRLIB/PROP LinearOperator is now explicitly exposed in frame initial LinearOperator will be automatically loaded when needed from /var/zope2/var/LatexWiki/LIN.NRLIB/LIN CaleyDickson is now explicitly exposed in frame initial CaleyDickson will be automatically loaded when needed from /var/zope2/var/LatexWiki/CALEY.NRLIB/CALEY

Use the following macros for convenient notation

axiom
-- summation
macro Σ(x,i,n)==reduce(+,[x for i in n])
Type: Void
axiom
-- list
macro Ξ(f,i,n)==[f for i in n]
Type: Void
axiom
-- subscript
macro sb == subscript
Type: Void

𝐋 is the domain of 8-dimensional linear operators over the rational functions ℚ (Expression Integer), i.e. ratio of polynomials with integer coefficients.

axiom
dim:=8

\label{eq1}8(1)
Type: PositiveInteger?
axiom
macro ℒ == List
Type: Void
axiom
macro ℂ == CaleyDickson
Type: Void
axiom
macro ℚ == Expression Integer
Type: Void
axiom
𝐋 := LinearOperator(dim, OVAR [], ℚ)

\label{eq2}\hbox{\axiomType{LinearOperator}\ } (8, \hbox{\axiomType{OrderedVariableList}\ } ([ ]) , \hbox{\axiomType{Expression}\ } (\hbox{\axiomType{Integer}\ }))(2)
Type: Type
axiom
𝐞:ℒ 𝐋      := basisVectors()

\label{eq3}\left[{|_{1}}, \:{|_{2}}, \:{|_{3}}, \:{|_{4}}, \:{|_{5}}, \:{|_{6}}, \:{|_{7}}, \:{|_{8}}\right](3)
Type: List(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))
axiom
𝐝:ℒ 𝐋      := basisForms()

\label{eq4}\left[{|_{\ }^{1}}, \:{|_{\ }^{2}}, \:{|_{\ }^{3}}, \:{|_{\ }^{4}}, \:{|_{\ }^{5}}, \:{|_{\ }^{6}}, \:{|_{\ }^{7}}, \:{|_{\ }^{8}}\right](4)
Type: List(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))
axiom
o:𝐋:=1;     -- identity for product
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
I:𝐋:=[1];   -- identity for composition
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
X:𝐋:=[2,1]; -- twist
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

Now generate structure constants for Octonion Algebra

The basis consists of the real and imaginary units. We use quaternion multiplication to form the "multiplication table" as a matrix. Then the structure constants can be obtained by dividing each matrix entry by the list of basis vectors.

Split-complex, co-quaternions and split-octonions can be specified by Caley-Dickson parameters

axiom
--q0:=sb('q,[0])
q0:=1  -- not split-complex

\label{eq5}1(5)
Type: PositiveInteger?
axiom
--q1:=sb('q,[1])
q1:=1  -- not co-quaternion

\label{eq6}1(6)
Type: PositiveInteger?
axiom
q2:=sb('q,[2])

\label{eq7}q_{2}(7)
Type: Symbol
axiom
--q2:=1  -- split-octonion
QQ := ℂ(ℂ(ℂ(ℚ,'i,q0),'j,q1),'k,q2);
Type: Type

Basis: Each B.i is a octonion number

axiom
B:ℒ QQ := map(x +-> hyper x,1$SQMATRIX(dim,ℚ)::ℒ ℒ ℚ)

\label{eq8}\left[ 1, \: i , \: j , \:{ij}, \: k , \:{ik}, \:{jk}, \:{{ij}k}\right](8)
Type: List(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,*01q(2)))
axiom
-- Multiplication table:
M:Matrix QQ := matrix Ξ(Ξ(B.i*B.j, i,1..dim), j,1..dim)

\label{eq9}\left[ 
\begin{array}{cccccccc}
1 & i & j &{ij}& k &{ik}&{jk}&{{ij}k}
\
i & - 1 & -{ij}& j &{- ik}& k &{{ij}k}& -{jk}
\
j &{ij}& - 1 & - i & -{jk}&{-{ij}k}& k &{ik}
\
{ij}& - j & i & - 1 &{-{ij}k}&{jk}&{- ik}& k 
\
k &{ik}&{jk}&{{ij}k}& -{q_{2}}&{-{q_{2}}i}&{-{q_{2}}j}&{{-{q_{2}}i}j}
\
{ik}& - k &{{ij}k}& -{jk}&{{q_{2}}i}& -{q_{2}}&{{{q_{2}}i}j}&{-{q_{2}}j}
\
{jk}&{-{ij}k}& - k &{ik}&{{q_{2}}j}&{{-{q_{2}}i}j}& -{q_{2}}&{{q_{2}}i}
\
{{ij}k}&{jk}&{- ik}& - k &{{{q_{2}}i}j}&{{q_{2}}j}&{-{q_{2}}i}& -{q_{2}}
(9)
Type: Matrix(CaleyDickson?(CaleyDickson?(CaleyDickson?(Expression(Integer),i,1),j,1),k,*01q(2)))
axiom
-- Function to divide the matrix entries by a basis element
S(y) == map(x +-> real real real(x/y),M)
Type: Void
axiom
-- The result is a nested list
ѕ :=map(S,B)::ℒ ℒ ℒ ℚ;
axiom
Compiling function S with type CaleyDickson(CaleyDickson(
      CaleyDickson(Expression(Integer),i,1),j,1),k,*01q(2)) -> Matrix(
      Expression(Integer))
Type: List(List(List(Expression(Integer))))
axiom
-- structure constants form a tensor operator
Y := Σ(Σ(Σ(ѕ(i)(k)(j)*𝐞.i*𝐝.j*𝐝.k, i,1..dim), j,1..dim), k,1..dim)

\label{eq10}\begin{array}{@{}l}
\displaystyle
{|_{1}^{1 \  1}}+{|_{2}^{1 \  2}}+{|_{3}^{1 \  3}}+{|_{4}^{1 \  4}}+{|_{5}^{1 \  5}}+{|_{6}^{1 \  6}}+{|_{7}^{1 \  7}}+{|_{8}^{1 \  8}}+ 
\
\
\displaystyle
{|_{2}^{2 \  1}}-{|_{1}^{2 \  2}}+{|_{4}^{2 \  3}}-{|_{3}^{2 \  4}}+{|_{6}^{2 \  5}}-{|_{5}^{2 \  6}}-{|_{8}^{2 \  7}}+{|_{7}^{2 \  8}}+ 
\
\
\displaystyle
{|_{3}^{3 \  1}}-{|_{4}^{3 \  2}}-{|_{1}^{3 \  3}}+{|_{2}^{3 \  4}}+{|_{7}^{3 \  5}}+{|_{8}^{3 \  6}}-{|_{5}^{3 \  7}}-{|_{6}^{3 \  8}}+ 
\
\
\displaystyle
{|_{4}^{4 \  1}}+{|_{3}^{4 \  2}}-{|_{2}^{4 \  3}}-{|_{1}^{4 \  4}}+{|_{8}^{4 \  5}}-{|_{7}^{4 \  6}}+{|_{6}^{4 \  7}}-{|_{5}^{4 \  8}}+ 
\
\
\displaystyle
{|_{5}^{5 \  1}}-{|_{6}^{5 \  2}}-{|_{7}^{5 \  3}}-{|_{8}^{5 \  4}}-{{q_{2}}\ {|_{1}^{5 \  5}}}+{{q_{2}}\ {|_{2}^{5 \  6}}}+{{q_{2}}\ {|_{3}^{5 \  7}}}+ 
\
\
\displaystyle
{{q_{2}}\ {|_{4}^{5 \  8}}}+{|_{6}^{6 \  1}}+{|_{5}^{6 \  2}}-{|_{8}^{6 \  3}}+{|_{7}^{6 \  4}}-{{q_{2}}\ {|_{2}^{6 \  5}}}-{{q_{2}}\ {|_{1}^{6 \  6}}}- 
\
\
\displaystyle
{{q_{2}}\ {|_{4}^{6 \  7}}}+{{q_{2}}\ {|_{3}^{6 \  8}}}+{|_{7}^{7 \  1}}+{|_{8}^{7 \  2}}+{|_{5}^{7 \  3}}-{|_{6}^{7 \  4}}-{{q_{2}}\ {|_{3}^{7 \  5}}}+ 
\
\
\displaystyle
{{q_{2}}\ {|_{4}^{7 \  6}}}-{{q_{2}}\ {|_{1}^{7 \  7}}}-{{q_{2}}\ {|_{2}^{7 \  8}}}+{|_{8}^{8 \  1}}-{|_{7}^{8 \  2}}+{|_{6}^{8 \  3}}+{|_{5}^{8 \  4}}- 
\
\
\displaystyle
{{q_{2}}\ {|_{4}^{8 \  5}}}-{{q_{2}}\ {|_{3}^{8 \  6}}}+{{q_{2}}\ {|_{2}^{8 \  7}}}-{{q_{2}}\ {|_{1}^{8 \  8}}}
(10)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
arity Y

\label{eq11}2 \over 1(11)
Type: Prop(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))
axiom
matrix Ξ(Ξ((𝐞.i*𝐞.j)/Y, i,1..dim), j,1..dim)

\label{eq12}\left[ 
\begin{array}{cccccccc}
{|_{1}}&{|_{2}}&{|_{3}}&{|_{4}}&{|_{5}}&{|_{6}}&{|_{7}}&{|_{8}}
\
{|_{2}}& -{|_{1}}& -{|_{4}}&{|_{3}}& -{|_{6}}&{|_{5}}&{|_{8}}& -{|_{7}}
\
{|_{3}}&{|_{4}}& -{|_{1}}& -{|_{2}}& -{|_{7}}& -{|_{8}}&{|_{5}}&{|_{6}}
\
{|_{4}}& -{|_{3}}&{|_{2}}& -{|_{1}}& -{|_{8}}&{|_{7}}& -{|_{6}}&{|_{5}}
\
{|_{5}}&{|_{6}}&{|_{7}}&{|_{8}}& -{{q_{2}}\ {|_{1}}}& -{{q_{2}}\ {|_{2}}}& -{{q_{2}}\ {|_{3}}}& -{{q_{2}}\ {|_{4}}}
\
{|_{6}}& -{|_{5}}&{|_{8}}& -{|_{7}}&{{q_{2}}\ {|_{2}}}& -{{q_{2}}\ {|_{1}}}&{{q_{2}}\ {|_{4}}}& -{{q_{2}}\ {|_{3}}}
\
{|_{7}}& -{|_{8}}& -{|_{5}}&{|_{6}}&{{q_{2}}\ {|_{3}}}& -{{q_{2}}\ {|_{4}}}& -{{q_{2}}\ {|_{1}}}&{{q_{2}}\ {|_{2}}}
\
{|_{8}}&{|_{7}}& -{|_{6}}& -{|_{5}}&{{q_{2}}\ {|_{4}}}&{{q_{2}}\ {|_{3}}}& -{{q_{2}}\ {|_{2}}}& -{{q_{2}}\ {|_{1}}}
(12)
Type: Matrix(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))

A scalar product is denoted by the (2,0)-tensor U = \{ u_{ij} \}

axiom
U:=Σ(Σ(script('u,[[],[i,j]])*𝐝.i*𝐝.j, i,1..dim), j,1..dim)

\label{eq13}\begin{array}{@{}l}
\displaystyle
{{u^{1, \: 1}}\ {|_{\ }^{1 \  1}}}+{{u^{1, \: 2}}\ {|_{\ }^{1 \  2}}}+{{u^{1, \: 3}}\ {|_{\ }^{1 \  3}}}+{{u^{1, \: 4}}\ {|_{\ }^{1 \  4}}}+ 
\
\
\displaystyle
{{u^{1, \: 5}}\ {|_{\ }^{1 \  5}}}+{{u^{1, \: 6}}\ {|_{\ }^{1 \  6}}}+{{u^{1, \: 7}}\ {|_{\ }^{1 \  7}}}+{{u^{1, \: 8}}\ {|_{\ }^{1 \  8}}}+ 
\
\
\displaystyle
{{u^{2, \: 1}}\ {|_{\ }^{2 \  1}}}+{{u^{2, \: 2}}\ {|_{\ }^{2 \  2}}}+{{u^{2, \: 3}}\ {|_{\ }^{2 \  3}}}+{{u^{2, \: 4}}\ {|_{\ }^{2 \  4}}}+ 
\
\
\displaystyle
{{u^{2, \: 5}}\ {|_{\ }^{2 \  5}}}+{{u^{2, \: 6}}\ {|_{\ }^{2 \  6}}}+{{u^{2, \: 7}}\ {|_{\ }^{2 \  7}}}+{{u^{2, \: 8}}\ {|_{\ }^{2 \  8}}}+ 
\
\
\displaystyle
{{u^{3, \: 1}}\ {|_{\ }^{3 \  1}}}+{{u^{3, \: 2}}\ {|_{\ }^{3 \  2}}}+{{u^{3, \: 3}}\ {|_{\ }^{3 \  3}}}+{{u^{3, \: 4}}\ {|_{\ }^{3 \  4}}}+ 
\
\
\displaystyle
{{u^{3, \: 5}}\ {|_{\ }^{3 \  5}}}+{{u^{3, \: 6}}\ {|_{\ }^{3 \  6}}}+{{u^{3, \: 7}}\ {|_{\ }^{3 \  7}}}+{{u^{3, \: 8}}\ {|_{\ }^{3 \  8}}}+ 
\
\
\displaystyle
{{u^{4, \: 1}}\ {|_{\ }^{4 \  1}}}+{{u^{4, \: 2}}\ {|_{\ }^{4 \  2}}}+{{u^{4, \: 3}}\ {|_{\ }^{4 \  3}}}+{{u^{4, \: 4}}\ {|_{\ }^{4 \  4}}}+ 
\
\
\displaystyle
{{u^{4, \: 5}}\ {|_{\ }^{4 \  5}}}+{{u^{4, \: 6}}\ {|_{\ }^{4 \  6}}}+{{u^{4, \: 7}}\ {|_{\ }^{4 \  7}}}+{{u^{4, \: 8}}\ {|_{\ }^{4 \  8}}}+ 
\
\
\displaystyle
{{u^{5, \: 1}}\ {|_{\ }^{5 \  1}}}+{{u^{5, \: 2}}\ {|_{\ }^{5 \  2}}}+{{u^{5, \: 3}}\ {|_{\ }^{5 \  3}}}+{{u^{5, \: 4}}\ {|_{\ }^{5 \  4}}}+ 
\
\
\displaystyle
{{u^{5, \: 5}}\ {|_{\ }^{5 \  5}}}+{{u^{5, \: 6}}\ {|_{\ }^{5 \  6}}}+{{u^{5, \: 7}}\ {|_{\ }^{5 \  7}}}+{{u^{5, \: 8}}\ {|_{\ }^{5 \  8}}}+ 
\
\
\displaystyle
{{u^{6, \: 1}}\ {|_{\ }^{6 \  1}}}+{{u^{6, \: 2}}\ {|_{\ }^{6 \  2}}}+{{u^{6, \: 3}}\ {|_{\ }^{6 \  3}}}+{{u^{6, \: 4}}\ {|_{\ }^{6 \  4}}}+ 
\
\
\displaystyle
{{u^{6, \: 5}}\ {|_{\ }^{6 \  5}}}+{{u^{6, \: 6}}\ {|_{\ }^{6 \  6}}}+{{u^{6, \: 7}}\ {|_{\ }^{6 \  7}}}+{{u^{6, \: 8}}\ {|_{\ }^{6 \  8}}}+ 
\
\
\displaystyle
{{u^{7, \: 1}}\ {|_{\ }^{7 \  1}}}+{{u^{7, \: 2}}\ {|_{\ }^{7 \  2}}}+{{u^{7, \: 3}}\ {|_{\ }^{7 \  3}}}+{{u^{7, \: 4}}\ {|_{\ }^{7 \  4}}}+ 
\
\
\displaystyle
{{u^{7, \: 5}}\ {|_{\ }^{7 \  5}}}+{{u^{7, \: 6}}\ {|_{\ }^{7 \  6}}}+{{u^{7, \: 7}}\ {|_{\ }^{7 \  7}}}+{{u^{7, \: 8}}\ {|_{\ }^{7 \  8}}}+ 
\
\
\displaystyle
{{u^{8, \: 1}}\ {|_{\ }^{8 \  1}}}+{{u^{8, \: 2}}\ {|_{\ }^{8 \  2}}}+{{u^{8, \: 3}}\ {|_{\ }^{8 \  3}}}+{{u^{8, \: 4}}\ {|_{\ }^{8 \  4}}}+ 
\
\
\displaystyle
{{u^{8, \: 5}}\ {|_{\ }^{8 \  5}}}+{{u^{8, \: 6}}\ {|_{\ }^{8 \  6}}}+{{u^{8, \: 7}}\ {|_{\ }^{8 \  7}}}+{{u^{8, \: 8}}\ {|_{\ }^{8 \  8}}}
(13)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

Definition 1

We say that the scalar product is associative if the tensor equation holds:

    Y   =   Y
     U     U

In other words, if the (3,0)-tensor:


\scalebox{1} % Change this value to rescale the drawing.
{
\begin{pspicture}(0,-0.92)(4.82,0.92)
\psbezier[linewidth=0.04](2.2,0.9)(2.2,0.1)(2.6,0.1)(2.6,0.9)
\psline[linewidth=0.04cm](2.4,0.3)(2.4,-0.1)
\psbezier[linewidth=0.04](2.4,-0.1)(2.4,-0.9)(3.0,-0.9)(3.0,-0.1)
\psline[linewidth=0.04cm](3.0,-0.1)(3.0,0.9)
\psbezier[linewidth=0.04](4.8,0.9)(4.8,0.1)(4.4,0.1)(4.4,0.9)
\psline[linewidth=0.04cm](4.6,0.3)(4.6,-0.1)
\psbezier[linewidth=0.04](4.6,-0.1)(4.6,-0.9)(4.0,-0.9)(4.0,-0.1)
\psline[linewidth=0.04cm](4.0,-0.1)(4.0,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(3.4948437,0.205){-}
\psline[linewidth=0.04cm](0.6,-0.7)(0.6,0.9)
\psbezier[linewidth=0.04](0.0,-0.1)(0.0,-0.9)(1.2,-0.9)(1.2,-0.1)
\psline[linewidth=0.04cm](0.0,-0.1)(0.0,0.9)
\psline[linewidth=0.04cm](1.2,-0.1)(1.2,0.9)
\usefont{T1}{ptm}{m}{n}
\rput(1.6948438,0.205){=}
\end{pspicture} 
}
 


\label{eq14}
  \Phi = \{ \phi^{ijk} = {y^e}_{ij} u_{ek} - u_{ie} {y_e}^{jk} \}
  (14)
(three-point function) is zero.

Using the LinearOperator? domain in Axiom and some carefully chosen symbols we can easily enter expressions that are both readable and interpreted by Axiom as "graphical calculus" diagrams describing complex products and compositions of linear operators.

axiom
ω:𝐋 :=(Y*I)/U  - (I*Y)/U;
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

Note: The only purpose of the o symbols on the left above is to serve as a constant left-side margin as required by Axiom. The symbols on the right describe the relation between row.

Definition 2

An algebra with a non-degenerate associative scalar product is called a [Frobenius Algebra]?.

We may consider the problem where multiplication Y is given, and look for all associative scalar products U = U(Y)

This problem can be solved using linear algebra.

axiom
)expose MCALCFN
MultiVariableCalculusFunctions is now explicitly exposed in frame initial J := jacobian(ravel ω,concat map(variables,ravel U)::ℒ Symbol);
Type: Matrix(Expression(Integer))
axiom
u := transpose matrix [concat map(variables,ravel U)::ℒ Symbol];
Type: Matrix(Polynomial(Integer))
axiom
J::OutputForm * u::OutputForm = 0

\label{eq15}(15)
Type: Equation(OutputForm?)
axiom
nrows(J),ncols(J)

\label{eq16}\left[{512}, \:{64}\right](16)
Type: Tuple(PositiveInteger?)

The matrix J transforms the coefficients of the tensor U into coefficients of the tensor \Phi. We are looking for the general linear family of tensors U=U(Y,p_i) such that J transforms U into \Phi=0 for any such U.

If the null space of the J matrix is not empty we can use the basis to find all non-trivial solutions for U:

axiom
Ñ:=nullSpace(J);
Type: List(Vector(Expression(Integer)))
axiom
ℰ:=map((x,y)+->x=y, concat
       map(variables,ravel U), entries Σ(sb('p,[i])*Ñ.i, i,1..#Ñ) )

\label{eq17}\begin{array}{@{}l}
\displaystyle
\left[{{u^{1, \: 1}}= -{{p_{1}}\over{q_{2}}}}, \:{{u^{1, \: 2}}= 0}, \:{{u^{1, \: 3}}= 0}, \:{{u^{1, \: 4}}= 0}, \:{{u^{1, \: 5}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{1, \: 6}}= 0}, \:{{u^{1, \: 7}}= 0}, \:{{u^{1, \: 8}}= 0}, \:{{u^{2, \: 1}}= 0}, \:{{u^{2, \: 2}}={{p_{1}}\over{q_{2}}}}, \: \right.
\
\
\displaystyle
\left.{{u^{2, \: 3}}= 0}, \:{{u^{2, \: 4}}= 0}, \:{{u^{2, \: 5}}= 0}, \:{{u^{2, \: 6}}= 0}, \:{{u^{2, \: 7}}= 0}, \:{{u^{2, \: 8}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{3, \: 1}}= 0}, \:{{u^{3, \: 2}}= 0}, \:{{u^{3, \: 3}}={{p_{1}}\over{q_{2}}}}, \:{{u^{3, \: 4}}= 0}, \:{{u^{3, \: 5}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{3, \: 6}}= 0}, \:{{u^{3, \: 7}}= 0}, \:{{u^{3, \: 8}}= 0}, \:{{u^{4, \: 1}}= 0}, \:{{u^{4, \: 2}}= 0}, \:{{u^{4, \: 3}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{4, \: 4}}={{p_{1}}\over{q_{2}}}}, \:{{u^{4, \: 5}}= 0}, \:{{u^{4, \: 6}}= 0}, \:{{u^{4, \: 7}}= 0}, \:{{u^{4, \: 8}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{5, \: 1}}= 0}, \:{{u^{5, \: 2}}= 0}, \:{{u^{5, \: 3}}= 0}, \:{{u^{5, \: 4}}= 0}, \:{{u^{5, \: 5}}={p_{1}}}, \: \right.
\
\
\displaystyle
\left.{{u^{5, \: 6}}= 0}, \:{{u^{5, \: 7}}= 0}, \:{{u^{5, \: 8}}= 0}, \:{{u^{6, \: 1}}= 0}, \:{{u^{6, \: 2}}= 0}, \:{{u^{6, \: 3}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{6, \: 4}}= 0}, \:{{u^{6, \: 5}}= 0}, \:{{u^{6, \: 6}}={p_{1}}}, \:{{u^{6, \: 7}}= 0}, \:{{u^{6, \: 8}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{7, \: 1}}= 0}, \:{{u^{7, \: 2}}= 0}, \:{{u^{7, \: 3}}= 0}, \:{{u^{7, \: 4}}= 0}, \:{{u^{7, \: 5}}= 0}, \:{{u^{7, \: 6}}= 0}, \right.
\
\
\displaystyle
\left.\:{{u^{7, \: 7}}={p_{1}}}, \:{{u^{7, \: 8}}= 0}, \:{{u^{8, \: 1}}= 0}, \:{{u^{8, \: 2}}= 0}, \:{{u^{8, \: 3}}= 0}, \: \right.
\
\
\displaystyle
\left.{{u^{8, \: 4}}= 0}, \:{{u^{8, \: 5}}= 0}, \:{{u^{8, \: 6}}= 0}, \:{{u^{8, \: 7}}= 0}, \:{{u^{8, \: 8}}={p_{1}}}\right] (17)
Type: List(Equation(Expression(Integer)))

This defines a family of Frobenius algebras:

axiom
zero? eval(ω,ℰ)

\label{eq18} \mbox{\rm true} (18)
Type: Boolean

In general the pairing is not symmetric!

axiom
Ų:𝐋 := eval(U,ℰ)

\label{eq19}\begin{array}{@{}l}
\displaystyle
-{{{p_{1}}\over{q_{2}}}\ {|_{\ }^{1 \  1}}}+{{{p_{1}}\over{q_{2}}}\ {|_{\ }^{2 \  2}}}+{{{p_{1}}\over{q_{2}}}\ {|_{\ }^{3 \  3}}}+{{{p_{1}}\over{q_{2}}}\ {|_{\ }^{4 \  4}}}+{{p_{1}}\ {|_{\ }^{5 \  5}}}+ 
\
\
\displaystyle
{{p_{1}}\ {|_{\ }^{6 \  6}}}+{{p_{1}}\ {|_{\ }^{7 \  7}}}+{{p_{1}}\ {|_{\ }^{8 \  8}}}
(19)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ((𝐞.i 𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq20}\left[ 
\begin{array}{cccccccc}
-{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}
(20)
Type: Matrix(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))

This is the most general form of the "dot product" of two quaternions

axiom
(a*b)/Ų
1 2 0 (-) - 1 0 arity warning: ------ 2 - 0

\label{eq21}\begin{array}{@{}l}
\displaystyle
-{{{{p_{1}}\  a \  b}\over{q_{2}}}\ {|_{\ }^{1 \  1}}}+{{{{p_{1}}\  a \  b}\over{q_{2}}}\ {|_{\ }^{2 \  2}}}+{{{{p_{1}}\  a \  b}\over{q_{2}}}\ {|_{\ }^{3 \  3}}}+{{{{p_{1}}\  a \  b}\over{q_{2}}}\ {|_{\ }^{4 \  4}}}+ 
\
\
\displaystyle
{{p_{1}}\  a \  b \ {|_{\ }^{5 \  5}}}+{{p_{1}}\  a \  b \ {|_{\ }^{6 \  6}}}+{{p_{1}}\  a \  b \ {|_{\ }^{7 \  7}}}+{{p_{1}}\  a \  b \ {|_{\ }^{8 \  8}}}
(21)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
(a*a)/Ų
1 2 0 (-) - 1 0 arity warning: ------ 2 - 0

\label{eq22}\begin{array}{@{}l}
\displaystyle
-{{{{p_{1}}\ {a^2}}\over{q_{2}}}\ {|_{\ }^{1 \  1}}}+{{{{p_{1}}\ {a^2}}\over{q_{2}}}\ {|_{\ }^{2 \  2}}}+{{{{p_{1}}\ {a^2}}\over{q_{2}}}\ {|_{\ }^{3 \  3}}}+{{{{p_{1}}\ {a^2}}\over{q_{2}}}\ {|_{\ }^{4 \  4}}}+ 
\
\
\displaystyle
{{p_{1}}\ {a^2}\ {|_{\ }^{5 \  5}}}+{{p_{1}}\ {a^2}\ {|_{\ }^{6 \  6}}}+{{p_{1}}\ {a^2}\ {|_{\ }^{7 \  7}}}+{{p_{1}}\ {a^2}\ {|_{\ }^{8 \  8}}}
(22)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

The scalar product must be non-degenerate:

axiom
Ů:=determinant Ξ(Ξ(retract((𝐞.i * 𝐞.j)/Ų), j,1..dim), i,1..dim)

\label{eq23}-{{{p_{1}}^8}\over{{q_{2}}^4}}(23)
Type: Expression(Integer)
axiom
factor Ů

\label{eq24}-{{{p_{1}}^8}\over{{q_{2}}^4}}(24)
Type: Factored(Expression(Integer))

Definition 3

Co-pairing

Solve the [Snake Relation]? as a system of linear equations.

axiom
Um:=matrix Ξ(Ξ((𝐞.i*𝐞.j)/Ų, i,1..dim), j,1..dim)

\label{eq25}\left[ 
\begin{array}{cccccccc}
-{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{{p_{1}}\over{q_{2}}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{p_{1}}
(25)
Type: Matrix(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))
axiom
mU:=transpose inverse map(retract,Um)

\label{eq26}\left[ 
\begin{array}{cccccccc}
-{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}
(26)
Type: Matrix(Expression(Integer))
axiom
Ω:=Σ(Σ(mU(i,j)*(𝐞.i*𝐞.j), i,1..dim), j,1..dim)

\label{eq27}\begin{array}{@{}l}
\displaystyle
-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  1}}}+{{{q_{2}}\over{p_{1}}}\ {|_{2 \  2}}}+{{{q_{2}}\over{p_{1}}}\ {|_{3 \  3}}}+{{{q_{2}}\over{p_{1}}}\ {|_{4 \  4}}}+{{1 \over{p_{1}}}\ {|_{5 \  5}}}+{{1 \over{p_{1}}}\ {|_{6 \  6}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{7 \  7}}}+{{1 \over{p_{1}}}\ {|_{8 \  8}}}
(27)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
matrix Ξ(Ξ(Ω/(𝐝.i*𝐝.j), i,1..dim), j,1..dim)

\label{eq28}\left[ 
\begin{array}{cccccccc}
-{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 & 0 
\
0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 & 0 
\
0 & 0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 & 0 
\
0 & 0 & 0 &{{q_{2}}\over{p_{1}}}& 0 & 0 & 0 & 0 
\
0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 & 0 
\
0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 & 0 
\
0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}& 0 
\
0 & 0 & 0 & 0 & 0 & 0 & 0 &{1 \over{p_{1}}}
(28)
Type: Matrix(LinearOperator?(8,OrderedVariableList?([]),Expression(Integer)))

Check "dimension" and the snake relations.

axiom
d:𝐋:=
    o   Ω    /
    o   X    /
    o   Ų    o

\label{eq29}8(29)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
test
    (    I Ω     )  /
    (     Ų I    )  =  I

\label{eq30} \mbox{\rm true} (30)
Type: Boolean
axiom
test
    (     Ω I    )  /
    (    I Ų     )  =  I

\label{eq31} \mbox{\rm true} (31)
Type: Boolean

Definition 4

Co-algebra

This expression is expensive to compute:

    λ:𝐋 :=
         o    Ω Ω  I    /
         o   I Y I I    /
         o   I  X  I    /
         o   I I  Ų     o

axiom
λ:𝐋 :=
     (    I Ω     )  /
     (     Y I    )

\label{eq32}\begin{array}{@{}l}
\displaystyle
-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  1}^{1}}}+{{{q_{2}}\over{p_{1}}}\ {|_{2 \  2}^{1}}}+{{{q_{2}}\over{p_{1}}}\ {|_{3 \  3}^{1}}}+{{{q_{2}}\over{p_{1}}}\ {|_{4 \  4}^{1}}}+{{1 \over{p_{1}}}\ {|_{5 \  5}^{1}}}+ 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{6 \  6}^{1}}}+{{1 \over{p_{1}}}\ {|_{7 \  7}^{1}}}+{{1 \over{p_{1}}}\ {|_{8 \  8}^{1}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  2}^{2}}}-{{{q_{2}}\over{p_{1}}}\ {|_{2 \  1}^{2}}}- 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{3 \  4}^{2}}}+{{{q_{2}}\over{p_{1}}}\ {|_{4 \  3}^{2}}}-{{1 \over{p_{1}}}\ {|_{5 \  6}^{2}}}+{{1 \over{p_{1}}}\ {|_{6 \  5}^{2}}}+{{1 \over{p_{1}}}\ {|_{7 \  8}^{2}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{8 \  7}^{2}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  3}^{3}}}+{{{q_{2}}\over{p_{1}}}\ {|_{2 \  4}^{3}}}-{{{q_{2}}\over{p_{1}}}\ {|_{3 \  1}^{3}}}-{{{q_{2}}\over{p_{1}}}\ {|_{4 \  2}^{3}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{5 \  7}^{3}}}-{{1 \over{p_{1}}}\ {|_{6 \  8}^{3}}}+{{1 \over{p_{1}}}\ {|_{7 \  5}^{3}}}+{{1 \over{p_{1}}}\ {|_{8 \  6}^{3}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  4}^{4}}}- 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{2 \  3}^{4}}}+{{{q_{2}}\over{p_{1}}}\ {|_{3 \  2}^{4}}}-{{{q_{2}}\over{p_{1}}}\ {|_{4 \  1}^{4}}}-{{1 \over{p_{1}}}\ {|_{5 \  8}^{4}}}+{{1 \over{p_{1}}}\ {|_{6 \  7}^{4}}}- 
\
\
\displaystyle
{{1 \over{p_{1}}}\ {|_{7 \  6}^{4}}}+{{1 \over{p_{1}}}\ {|_{8 \  5}^{4}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  5}^{5}}}+{{{q_{2}}\over{p_{1}}}\ {|_{2 \  6}^{5}}}+{{{q_{2}}\over{p_{1}}}\ {|_{3 \  7}^{5}}}+ 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{4 \  8}^{5}}}-{{{q_{2}}\over{p_{1}}}\ {|_{5 \  1}^{5}}}-{{{q_{2}}\over{p_{1}}}\ {|_{6 \  2}^{5}}}-{{{q_{2}}\over{p_{1}}}\ {|_{7 \  3}^{5}}}-{{{q_{2}}\over{p_{1}}}\ {|_{8 \  4}^{5}}}- 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{1 \  6}^{6}}}-{{{q_{2}}\over{p_{1}}}\ {|_{2 \  5}^{6}}}+{{{q_{2}}\over{p_{1}}}\ {|_{3 \  8}^{6}}}-{{{q_{2}}\over{p_{1}}}\ {|_{4 \  7}^{6}}}+{{{q_{2}}\over{p_{1}}}\ {|_{5 \  2}^{6}}}- 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{6 \  1}^{6}}}+{{{q_{2}}\over{p_{1}}}\ {|_{7 \  4}^{6}}}-{{{q_{2}}\over{p_{1}}}\ {|_{8 \  3}^{6}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  7}^{7}}}-{{{q_{2}}\over{p_{1}}}\ {|_{2 \  8}^{7}}}- 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{3 \  5}^{7}}}+{{{q_{2}}\over{p_{1}}}\ {|_{4 \  6}^{7}}}+{{{q_{2}}\over{p_{1}}}\ {|_{5 \  3}^{7}}}-{{{q_{2}}\over{p_{1}}}\ {|_{6 \  4}^{7}}}-{{{q_{2}}\over{p_{1}}}\ {|_{7 \  1}^{7}}}+ 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{8 \  2}^{7}}}-{{{q_{2}}\over{p_{1}}}\ {|_{1 \  8}^{8}}}+{{{q_{2}}\over{p_{1}}}\ {|_{2 \  7}^{8}}}-{{{q_{2}}\over{p_{1}}}\ {|_{3 \  6}^{8}}}-{{{q_{2}}\over{p_{1}}}\ {|_{4 \  5}^{8}}}+ 
\
\
\displaystyle
{{{q_{2}}\over{p_{1}}}\ {|_{5 \  4}^{8}}}+{{{q_{2}}\over{p_{1}}}\ {|_{6 \  3}^{8}}}-{{{q_{2}}\over{p_{1}}}\ {|_{7 \  2}^{8}}}-{{{q_{2}}\over{p_{1}}}\ {|_{8 \  1}^{8}}}
(32)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
test
     (     Ω I    )  /
     (    I Y     )  =  λ

\label{eq33} \mbox{\rm true} (33)
Type: Boolean

Frobenius Condition

It takes to long to computer here but it turns out that Octonion algebra fails the Frobenius Condition::

\begin{axiom}

Χ := Y / λ

test ( λ I ) / ( I Y ) = Χ

test ( I λ ) / ( Y I ) = Χ

\end{axiom}

Perhaps this is not surprising since Octonion algebra is not associative. Nevertheless it is "Frobenius" in a more general sense because there is a non-degenerate associative pairing and co-pairing.

i = Unit of the algebra

axiom
i:=𝐞.1

\label{eq34}|_{1}(34)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
test
     o    i     /
     o    λ     =    Ω

\label{eq35} \mbox{\rm true} (35)
Type: Boolean

Handle

axiom
H:𝐋 :=
     o    λ    o /
     o    Y    o

\label{eq36}\begin{array}{@{}l}
\displaystyle
-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{1}^{1}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{2}^{2}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{3}^{3}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{4}^{4}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{5}^{5}}}- 
\
\
\displaystyle
{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{6}^{6}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{7}^{7}}}-{{{8 \ {q_{2}}}\over{p_{1}}}\ {|_{8}^{8}}}
(36)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

Definition 5

Co-unit
  i 
  U
  

axiom
ι:𝐋:=
    o    i I    /
    o     Ų    o

\label{eq37}-{{{p_{1}}\over{q_{2}}}\ {|_{\ }^{1}}}(37)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))

Y=U
ι  
axiom
test
   o     Y     /
   o     ι     o  = Ų

\label{eq38} \mbox{\rm true} (38)
Type: Boolean

For example:

axiom
ex1:=[q[2]=1,p[1]=1]

\label{eq39}\left[{{q_{2}}= 1}, \:{{p_{1}}= 1}\right](39)
Type: List(Equation(Polynomial(Integer)))
axiom
Ų0:𝐋  :=eval(Ų,ex1)

\label{eq40}-{|_{\ }^{1 \  1}}+{|_{\ }^{2 \  2}}+{|_{\ }^{3 \  3}}+{|_{\ }^{4 \  4}}+{|_{\ }^{5 \  5}}+{|_{\ }^{6 \  6}}+{|_{\ }^{7 \  7}}+{|_{\ }^{8 \  8}}(40)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
Ω0:𝐋  :=eval(Ω,ex1)$𝐋

\label{eq41}-{|_{1 \  1}}+{|_{2 \  2}}+{|_{3 \  3}}+{|_{4 \  4}}+{|_{5 \  5}}+{|_{6 \  6}}+{|_{7 \  7}}+{|_{8 \  8}}(41)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
λ0:𝐋  :=eval(λ,ex1)$𝐋

\label{eq42}\begin{array}{@{}l}
\displaystyle
-{|_{1 \  1}^{1}}+{|_{2 \  2}^{1}}+{|_{3 \  3}^{1}}+{|_{4 \  4}^{1}}+{|_{5 \  5}^{1}}+{|_{6 \  6}^{1}}+{|_{7 \  7}^{1}}+ 
\
\
\displaystyle
{|_{8 \  8}^{1}}-{|_{1 \  2}^{2}}-{|_{2 \  1}^{2}}-{|_{3 \  4}^{2}}+{|_{4 \  3}^{2}}-{|_{5 \  6}^{2}}+{|_{6 \  5}^{2}}+{|_{7 \  8}^{2}}- 
\
\
\displaystyle
{|_{8 \  7}^{2}}-{|_{1 \  3}^{3}}+{|_{2 \  4}^{3}}-{|_{3 \  1}^{3}}-{|_{4 \  2}^{3}}-{|_{5 \  7}^{3}}-{|_{6 \  8}^{3}}+{|_{7 \  5}^{3}}+ 
\
\
\displaystyle
{|_{8 \  6}^{3}}-{|_{1 \  4}^{4}}-{|_{2 \  3}^{4}}+{|_{3 \  2}^{4}}-{|_{4 \  1}^{4}}-{|_{5 \  8}^{4}}+{|_{6 \  7}^{4}}-{|_{7 \  6}^{4}}+ 
\
\
\displaystyle
{|_{8 \  5}^{4}}-{|_{1 \  5}^{5}}+{|_{2 \  6}^{5}}+{|_{3 \  7}^{5}}+{|_{4 \  8}^{5}}-{|_{5 \  1}^{5}}-{|_{6 \  2}^{5}}-{|_{7 \  3}^{5}}- 
\
\
\displaystyle
{|_{8 \  4}^{5}}-{|_{1 \  6}^{6}}-{|_{2 \  5}^{6}}+{|_{3 \  8}^{6}}-{|_{4 \  7}^{6}}+{|_{5 \  2}^{6}}-{|_{6 \  1}^{6}}+{|_{7 \  4}^{6}}- 
\
\
\displaystyle
{|_{8 \  3}^{6}}-{|_{1 \  7}^{7}}-{|_{2 \  8}^{7}}-{|_{3 \  5}^{7}}+{|_{4 \  6}^{7}}+{|_{5 \  3}^{7}}-{|_{6 \  4}^{7}}-{|_{7 \  1}^{7}}+ 
\
\
\displaystyle
{|_{8 \  2}^{7}}-{|_{1 \  8}^{8}}+{|_{2 \  7}^{8}}-{|_{3 \  6}^{8}}-{|_{4 \  5}^{8}}+{|_{5 \  4}^{8}}+{|_{6 \  3}^{8}}-{|_{7 \  2}^{8}}- 
\
\
\displaystyle
{|_{8 \  1}^{8}}
(42)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))
axiom
H0:𝐋 :=eval(H,ex1)$𝐋

\label{eq43}-{8 \ {|_{1}^{1}}}-{8 \ {|_{2}^{2}}}-{8 \ {|_{3}^{3}}}-{8 \ {|_{4}^{4}}}-{8 \ {|_{5}^{5}}}-{8 \ {|_{6}^{6}}}-{8 \ {|_{7}^{7}}}-{8 \ {|_{8}^{8}}}(43)
Type: LinearOperator?(8,OrderedVariableList?([]),Expression(Integer))