| Assume that I have a  fricas (1) -> L := [[- 1, 
 Type: List(List(Integer)) (which is calculated from some earlier expressions).
How can I convert it into a  fricas L2:=[concat([L.i.j for j in 1..#L.i], 
 Type: List(List(Integer)) Namely I want to have a matrix like: fricas A := matrix L2 
 Type: Matrix(Integer) so that I can do fricas vp := vector[p0, 
 and fricas vp * A 
 Type: Vector(Polynomial(Integer)) | 
![\label{eq1}\left[{\left[ - 1, \: 3, \: - 3, \: 1 \right]}, \:{\left[ 3, \: - 6, \: 3 \right]}, \:{\left[ - 3, \: 3 \right]}, \:{\left[ 1 \right]}\right] 
\label{eq1}\left[{\left[ - 1, \: 3, \: - 3, \: 1 \right]}, \:{\left[ 3, \: - 6, \: 3 \right]}, \:{\left[ - 3, \: 3 \right]}, \:{\left[ 1 \right]}\right]](images/5490416470170246866-16.0px.png)
![\label{eq2}\left[{\left[ - 1, \: 3, \: - 3, \: 1 \right]}, \:{\left[ 3, \: - 6, \: 3, \: 0 \right]}, \:{\left[ - 3, \: 3, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right] 
\label{eq2}\left[{\left[ - 1, \: 3, \: - 3, \: 1 \right]}, \:{\left[ 3, \: - 6, \: 3, \: 0 \right]}, \:{\left[ - 3, \: 3, \: 0, \: 0 \right]}, \:{\left[ 1, \: 0, \: 0, \: 0 \right]}\right]](images/7793675996418021589-16.0px.png)

![\label{eq4}\left[ p 0, \: p 1, \: p 2, \: p 3 \right] 
\label{eq4}\left[ p 0, \: p 1, \: p 2, \: p 3 \right]](images/2807874791227082489-16.0px.png)
![\label{eq5}\left[{p 3 -{3 \  p 2}+{3 \  p 1}- p 0}, \:{{3 \  p 2}-{6 \  p 1}+{3 \  p 0}}, \:{{3 \  p 1}-{3 \  p 0}}, \: p 0 \right] 
\label{eq5}\left[{p 3 -{3 \  p 2}+{3 \  p 1}- p 0}, \:{{3 \  p 2}-{6 \  p 1}+{3 \  p 0}}, \:{{3 \  p 1}-{3 \  p 0}}, \: p 0 \right]](images/3173458622616540898-16.0px.png)