login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for ExampleSkewPolynomial revision 2 of 5

1 2 3 4 5
Editor: hemmecke
Time: 2015/02/18 23:39:44 GMT+0
Note:

changed:
-    Let's first consider differential
-    operator algebra
    Let's first consider a differential
    operator algebra.

added:

    Similarly, we can define a
    shift algebra.

added:

    The multivariate case is only
    sligthly more complicated.

    Let us here use a field as coefficient domain.

Computing with non-commutative polynomials

Univariate differential case

Let's first consider a differential operator algebra.

fricas
Z ==> Integer
Type: Void
fricas
P ==> UnivariatePolynomial('x, Z)
Type: Void
fricas
sigma1: Automorphism P := 1

\label{eq1}\mbox{\rm R - > R}(1)
Type: Automorphism(UnivariatePolynomial?(x,Integer))
fricas
delta1: P -> P := D$P

\label{eq2}\mbox{theMap (...)}(2)
Type: (UnivariatePolynomial?(x,Integer) -> UnivariatePolynomial?(x,Integer))
fricas
S1 ==> UnivariateSkewPolynomial('X, P, sigma1, delta1)
Type: Void
fricas
x1: S1 := 'x

\label{eq3}x(3)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(DIFRING-;D;2S;1,303))
fricas
X1: S1 := 'X

\label{eq4}X(4)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(DIFRING-;D;2S;1,303))
fricas
X1*x1

\label{eq5}{x \  X}+ 1(5)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(DIFRING-;D;2S;1,303))

Univariate shift case

Similarly, we can define a shift algebra.

fricas
xp: P := 'x

\label{eq6}x(6)
Type: UnivariatePolynomial?(x,Integer)
fricas
sigma2: Automorphism P := morphism((p: P): P +-> p(x+1), (p: P): P +-> p(x-1))

\label{eq7}\mbox{\rm R - > R}(7)
Type: Automorphism(UnivariatePolynomial?(x,Integer))
fricas
delta2: P -> P := (p: P): P +-> 0

\label{eq8}\mbox{theMap (...)}(8)
Type: (UnivariatePolynomial?(x,Integer) -> UnivariatePolynomial?(x,Integer))
fricas
S2 ==> UnivariateSkewPolynomial('X, P, sigma2, delta2)
Type: Void
fricas
x2: S2 := 'x

\label{eq9}x(9)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(*1;anonymousFunction;2;initial;internal))
fricas
X2: S2 := 'X

\label{eq10}X(10)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(*1;anonymousFunction;2;initial;internal))
fricas
X2*x2

\label{eq11}{\left(x + 1 \right)}\  X(11)
Type: UnivariateSkewPolynomial?(X,UnivariatePolynomial?(x,Integer),R -> R,theMap(*1;anonymousFunction;2;initial;internal))

Multivariate case

The multivariate case is only sligthly more complicated.

Let us here use a field as coefficient domain.

fricas
1

\label{eq12}1(12)
Type: PositiveInteger?