login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for dirichlet.spad revision 2 of 2

1 2
Editor: page
Time: 2016/09/01 18:01:03 GMT+0
Note:

changed:
-\documentclass{article}
-\usepackage{axiom,amsthm,amsmath,amsfonts,url}
-\newtheorem{ToDo}{ToDo}[section]
-
-\newcommand{\Axiom}{{\tt Axiom}}
-\begin{document}
-\title{dirichlet.spad}
-\author{Martin Rubey}
-\maketitle
-\begin{abstract}
-  The domain defined in this file models the Dirichlet ring,
-\end{abstract}
-\tableofcontents
-
-\section{The Dirichlet Ring}
Drichlet ring is now included in FriCAS

The Dirichlet Ring


changed:
-(see \url{http://en.wikipedia.org/wiki/Arithmetic_function}) together
(see http://en.wikipedia.org/wiki/Arithmetic_function) together

changed:
-\url{http://en.wikipedia.org/wiki/Dirichlet_convolution}) as
http://en.wikipedia.org/wiki/Dirichlet_convolution) as

changed:
-\section{domain DIRRING DirichletRing}
-<<domain DIRRING DirichletRing>>=
-)abbrev domain DIRRING DirichletRing
-++ Author: Martin Rubey
-++ Description: DirichletRing is the ring of arithmetical functions
-++ with Dirichlet convolution as multiplication
-DirichletRing(Coef: Ring):
-            Exports == Implementation where
-
-    PI ==> PositiveInteger
-    FUN ==> PI -> Coef
-
-    Exports ==> Join(Ring, Eltable(PI, Coef)) with
-
-        if Coef has CommutativeRing then 
-            IntegralDomain
-
-        if Coef has CommutativeRing then 
-            Algebra Coef
-
-	coerce: FUN -> %
-	coerce: % -> FUN
-        coerce: Stream Coef -> %
-        coerce: % -> Stream Coef
-
-        zeta: constant -> %
-        ++ zeta() returns the function which is constantly one
-
-        multiplicative?: % -> Boolean
-        ++ multiplicative?(a) returns true if the first
-        ++ $streamCount$Lisp coefficients of a are multiplicative 
-
-        additive?: % -> Boolean
-        ++ additive?(a) returns true if the first
-        ++ $streamCount$Lisp coefficients of a are additive 
-
-    Implementation ==> add
-
-        Rep := Record(function: FUN)
-
-        per(f: Rep): % == f pretend %   
-        rep(a: %): Rep == a pretend Rep 
-
-        elt(a: %, n: PI): Coef ==
-            f: FUN := (rep a).function
-            f n
-
-	coerce(a: %): FUN == (rep a).function
-
-	coerce(f: FUN): % == per [f]
-
-        indices: Stream Integer 
-                := integers(1)$StreamTaylorSeriesOperations(Integer)
-
-        coerce(a: %): Stream Coef ==
-            f: FUN := (rep a).function
-            map((n: Integer): Coef +-> f(n::PI), indices)
-               $StreamFunctions2(Integer, Coef)
-
-        coerce(f: Stream Coef): % == 
-            ((n: PI): Coef +-> f.(n::Integer))::%
-
-        coerce(f: %): OutputForm == f::Stream Coef::OutputForm
-
-        1: % == 
-            ((n: PI): Coef +-> (if one? n then 1$Coef else 0$Coef))::%
-
-        0: % == 
-            ((n: PI): Coef +-> 0$Coef)::%
-
-        zeta: % ==
-            ((n: PI): Coef +-> 1$Coef)::%
-
-        (f: %) + (g: %) == 
-            ((n: PI): Coef +-> f(n)+g(n))::%
-
-        - (f: %) ==
-            ((n: PI): Coef +-> -f(n))::%
-
-        (a: Integer) * (f: %) ==
-            ((n: PI): Coef +-> a*f(n))::%
-
-        (a: Coef) * (f: %) ==
-            ((n: PI): Coef +-> a*f(n))::%
-
-        import IntegerNumberTheoryFunctions
-
-        (f: %) * (g: %) == 
-            conv := (n: PI): Coef +-> _
-                 reduce((a: Coef, b: Coef): Coef +-> a + b, _
-                        [f(d::PI) * g((n quo d)::PI) for d in divisors(n::Integer)], 0)
-                        $ListFunctions2(Coef, Coef)
-            conv::%
-
-        unit?(a: %): Boolean == not (recip(a(1$PI))$Coef case "failed")
-
-        qrecip: (%, Coef, PI) -> Coef
-        qrecip(f: %, f1inv: Coef, n: PI): Coef ==
-            if one? n then f1inv
-            else 
-                -f1inv * reduce(_+, [f(d::PI) * qrecip(f, f1inv, (n quo d)::PI) _
-                                     for d in rest divisors(n)], 0) _
-                               $ListFunctions2(Coef, Coef)
-
-        recip f ==
-            if (f1inv := recip(f(1$PI))$Coef) case "failed" then "failed"
-            else 
-                mp := (n: PI): Coef +-> qrecip(f, f1inv, n)
-
-                mp::%::Union(%, "failed")
-
-        multiplicative? a ==
-            n: Integer := _$streamCount$Lisp
-            for i in 2..n repeat
-                fl := factors(factor i)$Factored(Integer)
-                rl := [a.(((f.factor)::PI)^((f.exponent)::PI)) for f in fl]
-                if a.(i::PI) ~= reduce((r:Coef, s:Coef):Coef +-> r*s, rl)
-                then 
-                    output(i::OutputForm)$OutputPackage
-                    output(rl::OutputForm)$OutputPackage
-                    return false
-            true
-
-        additive? a ==
-            n: Integer := _$streamCount$Lisp
-            for i in 2..n repeat
-                fl := factors(factor i)$Factored(Integer)
-                rl := [a.(((f.factor)::PI)^((f.exponent)::PI)) for f in fl]
-                if a.(i::PI) ~= reduce((r:Coef, s:Coef):Coef +-> r+s, rl)
-                then 
-                    output(i::OutputForm)$OutputPackage
-                    output(rl::OutputForm)$OutputPackage
-                    return false
-            true
-
-
-@
-\section{License}
-<<license>>=
---Copyright (c) 2010, Martin Rubey <Martin.Rubey@math.uni-hannover.de>
---
---Redistribution and use in source and binary forms, with or without
---modification, are permitted provided that the following conditions are
---met:
---
---    - Redistributions of source code must retain the above copyright
---      notice, this list of conditions and the following disclaimer.
---
---    - Redistributions in binary form must reproduce the above copyright
---      notice, this list of conditions and the following disclaimer in
---      the documentation and/or other materials provided with the
---      distribution.
---
---THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
---IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
---TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
---PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
---OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
---EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
---PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
---PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
---LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
---NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
---SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-@
-
-<<*>>=
-<<license>>
-
-<<domain DIRRING DirichletRing>>
-@
-\end{document}


Drichlet ring is now included in FriCAS

The Dirichlet Ring

The Dirichlet Ring is the ring of arithmetical functions

 f: \mathbb N_+ \rightarrow R 
(see http://en.wikipedia.org/wiki/Arithmetic_function) together with the Dirichlet convolution (see http://en.wikipedia.org/wiki/Dirichlet_convolution) as multiplication and component-wise addition. Since we can consider the values an arithmetic functions assumes as the coefficients of a Dirichlet generating series, we call R the coefficient ring of a function.

In general we only assume that the coefficient ring R is a ring. If R happens to be commutative, then so is the Dirichlet ring, and in this case it is even an algebra.

Apart from the operations inherited from those categories, we only provide some convenient coercion functions.