This domain implements cartesian product, we give example usage here: fricas (1) -> X:=Product(IntegerMod 3,
Type: Type
fricas size()$X
Type: NonNegativeInteger?
fricas [index(i)$X for i in 1..size()$X::PositiveInteger] fricas Compiling function G3 with type NonNegativeInteger -> Boolean
fricas reduce(_and,
Type: Boolean
fricas lookup(construct(2,
Type: PositiveInteger?
fricas [random()$X for i in 1..5]
|
![\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 1, \:{\left\{ \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 2 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 0 \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 1, \:{\left\{ 2, \: 0 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 2 \right\}}\right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 2, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 1, \: 2 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 1, \: 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 2, \: 0 \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}\right]
\label{eq3}\begin{array}{@{}l}
\displaystyle
\left[{\left[ 1, \:{\left\{ \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 2 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 0 \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 1, \:{\left\{ 2, \: 0 \right\}}\right]}, \:{\left[ 1, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 2 \right\}}\right]}, \right.
\
\
\displaystyle
\left.\:{\left[ 2, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 2, \: 0 \right\}}\right]}, \:{\left[ 2, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\left\{ 1 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 2 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 1, \: 2 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 1, \: 0 \right\}}\right]}, \:{\left[ 0, \:{\left\{ 2, \: 0 \right\}}\right]}, \: \right.
\
\
\displaystyle
\left.{\left[ 0, \:{\left\{ 1, \: 2, \: 0 \right\}}\right]}\right]](images/5409320734295793718-16.0px.png)