When I type:
fricas
(1) -> ex1:=(x-x/(x+exp(x)/(x*log(x+x))))*exp(2)
Type: Expression(Integer)
fricas
ex2:=D(ex1, x)
Type: Expression(Integer)
fricas
ex3:=simplify(ex2)
Type: Expression(Integer)
fricas
integrate(ex3, x)
Type: Union(Expression(Integer),...)
then Axiom 3.9 returns unevaluated integral.
Note, that if I remove the exp(2) factor, then Axiom is able to
compute the integral.
fricas
ex4:=(x-x/(x+exp(x)/(x*log(x+x))))
Type: Expression(Integer)
fricas
ex5:=D(ex4, x)
Type: Expression(Integer)
fricas
ex6:=simplify(ex5)
Type: Expression(Integer)
fricas
integrate(ex6, x)
Type: Union(Expression(Integer),...)
Severity: normal => critical
Category: Axiom Mathematics => Axiom Library
If I try:
fricas
integrate(simplify(((x^4*log(2*x)^2+(3*x^2-2*x)*exp(x)*log(2*x)+exp(2*x)-x*exp(x))/(x^4*log(2*x)^2+2*x^2*exp(x)*log(2*x)+exp(2*x))-1)*exp(2)), x)
Type: Union(Expression(Integer),...)
I see that Axiom failed to recognize that e^4 - (e^2)^2 is
zero. AFAICS similar problem appears in original example:
when I trace rischNormalize I see that both e^2 and e^4
appear in "normalized" function. But this may cause
trouble later, since Axiom assumes that different kernels
are algebraically independent.
I do not know if rischNormalize is supposed to simplify
constants (maybe this shoud be done by a separtate pass)
but failing to recognize "transcendental" zero may give
wrong results and otherwise Risch algorithm may declare
an integrable function as non integrable.
Status: open => fixed somewhere
Status: fixed somewhere => closed