login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Edit detail for #223 Legendre Polynomials revision 1 of 2

1 2
Editor:
Time: 2007/11/17 22:11:25 GMT-8
Note: Legendre example

changed:
-
I am unable to create a differential operator to generate Legendre Polynomials using the Axiom Book prescription or using HyoerDoc.  I have tried on both Windows and Mandrake Linux versions and the result is the same.

Gerald Farmer  

From billpage Sun Oct 23 12:50:48 -0500 2005
From: billpage
Date: Sun, 23 Oct 2005 12:50:48 -0500
Subject: Legendre example
Message-ID: <20051023125048-0500@wiki.axiom-developer.org>

Axiom book page 720:

\begin{axiom}
L n ==
  n = 0 => 1
  n = 1 => x
  (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
\end{axiom}
\begin{axiom}
dx := operator("D") :: OP(POLY FRAC INT)
Dp(p) == D(p, 'x)
-- use an explicit function instead of anonymous
evaluate(dx, Dp)
E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)
\end{axiom}
\begin{axiom}
L 15
E 15
(E 15)(L 15)
\end{axiom}



Submitted by : (unknown) at: 2007-11-17T22:11:25-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

I am unable to create a differential operator to generate Legendre Polynomials using the Axiom Book prescription or using HyoerDoc?. I have tried on both Windows and Mandrake Linux versions and the result is the same.

Gerald Farmer

Legendre example --billpage, Sun, 23 Oct 2005 12:50:48 -0500 reply
Axiom book page 720:

axiom
L n == n = 0 => 1 n = 1 => x (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
Type: Void

axiom
dx := operator("D") :: OP(POLY FRAC INT)
LatexWiki Image(1)
Type: Operator Polynomial Fraction Integer
axiom
Dp(p) == D(p, 'x)
Type: Void
axiom
-- use an explicit function instead of anonymous evaluate(dx, Dp)
axiom
Compiling function Dp with type Polynomial Fraction Integer -> 
      Polynomial Fraction Integer
LatexWiki Image(2)
Type: Operator Polynomial Fraction Integer
axiom
E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)
Type: Void

axiom
L 15
axiom
Compiling function L with type Integer -> Polynomial Fraction 
      Integer
axiom
Compiling function L as a recurrence relation.
LatexWiki Image(3)
Type: Polynomial Fraction Integer
axiom
E 15
axiom
Compiling function E with type PositiveInteger -> Operator 
      Polynomial Fraction Integer
LatexWiki Image(4)
Type: Operator Polynomial Fraction Integer
axiom
(E 15)(L 15)
LatexWiki Image(5)
Type: Polynomial Fraction Integer