|
|
last edited 16 years ago by kratt6 |
1 2 | ||
Editor:
Time: 2007/11/17 22:11:25 GMT-8 |
||
Note: Legendre example |
changed: - I am unable to create a differential operator to generate Legendre Polynomials using the Axiom Book prescription or using HyoerDoc. I have tried on both Windows and Mandrake Linux versions and the result is the same. Gerald Farmer From billpage Sun Oct 23 12:50:48 -0500 2005 From: billpage Date: Sun, 23 Oct 2005 12:50:48 -0500 Subject: Legendre example Message-ID: <20051023125048-0500@wiki.axiom-developer.org> Axiom book page 720: \begin{axiom} L n == n = 0 => 1 n = 1 => x (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2) \end{axiom} \begin{axiom} dx := operator("D") :: OP(POLY FRAC INT) Dp(p) == D(p, 'x) -- use an explicit function instead of anonymous evaluate(dx, Dp) E n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1) \end{axiom} \begin{axiom} L 15 E 15 (E 15)(L 15) \end{axiom}
I am unable to create a differential operator to generate Legendre Polynomials using the Axiom Book prescription or using HyoerDoc?. I have tried on both Windows and Mandrake Linux versions and the result is the same.
Gerald Farmer
axiomL n == n = 0 => 1 n = 1 => x (2*n-1)/n * x * L(n-1) - (n-1)/n * L(n-2)
axiomdx := operator("D") :: OP(POLY FRAC INT)
(1) |
axiomDp(p) == D(p, 'x)
axiom-- use an explicit function instead of anonymous evaluate(dx, Dp)
Compiling function Dp with type Polynomial Fraction Integer -> Polynomial Fraction Integer
(2) |
axiomE n == (1 - x**2) * dx**2 - 2 * x * dx + n*(n+1)
axiomL 15
Compiling function L with type Integer -> Polynomial Fraction Integer
Compiling function L as a recurrence relation.
(3) |
axiomE 15
Compiling function E with type PositiveInteger -> Operator Polynomial Fraction Integer
(4) |
axiom(E 15)(L 15)
(5) |