|
|
last edited 16 years ago by kratt6 |
1 2 3 4 | ||
Editor: kratt6
Time: 2007/12/28 12:45:29 GMT-8 |
||
Note: unfortunately, TeX output misses a parenthesis. See Issue #95 |
added:
)se ou algebra on
axiomp := -x*y^2+x*y+x^3-x^2
(1) |
axiom)se ou algebra on D(factor(p),x) 2 2 (2) - (y - y - 3x + 2x)
(2) |
axiomD(p,x) 2 2 (3) - y + y + 3x - 2x
(3) |
Note that the factorization is correct. It's the D(.,x) that misses the sign.
differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo (fr := unit(u)::%))::%) ans + fr * (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])
It intends to use the formula
where
Therefore, the fix is to leave away the 'fr':
differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo unit(u)::%)::%) ans + (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])
Martin
Status: fix proposed => closed Category: Axiom Mathematics => Axiom Library