|
|
last edited 16 years ago by kratt6 |
1 2 3 4 | ||
Editor:
Time: 2007/11/17 22:02:51 GMT-8 |
||
Note: applied in patch-41 |
changed: - \begin{axiom} p := -x*y^2+x*y+x^3-x^2 D(factor(p),x) D(p,x) \end{axiom} Note that the factorization is correct. It's the D(.,x) that misses the sign. From unknown Mon Jun 20 10:18:00 -0500 2005 From: unknown Date: Mon, 20 Jun 2005 10:18:00 -0500 Subject: Forgot to categorize... Message-ID: <20050620101800-0500@page.axiom-developer.org> Category: Axiom Compiler => Axiom Mathematics Severity: normal => serious From kratt6 Tue Jun 21 05:43:03 -0500 2005 From: kratt6 Date: Tue, 21 Jun 2005 05:43:03 -0500 Subject: Fix Message-ID: <20050621054303-0500@page.axiom-developer.org> Severity: serious => critical Status: open => fix proposed From kratt6 Tue Jun 21 05:45:04 -0500 2005 From: kratt6 Date: Tue, 21 Jun 2005 05:45:04 -0500 Subject: Fix Message-ID: <20050621054504-0500@page.axiom-developer.org> The mistake is in differentiate\$FR which currently reads:: differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo (fr := unit(u)::%))::%) ans + fr * (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u]) It intends to use the formula $$\frac{d}{dx} f(x)) = \sum_{i=1}^n \frac{f(x)}{f_i(x)}\frac{d}{dx}f_i(x)$$ where $$f(x)=\prod_{i=1}^n f_i(x).$$ Therefore, the fix is to leave away the 'fr':: differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo unit(u)::%)::%) ans + (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u]) Martin From kratt6 Tue Oct 4 05:51:35 -0500 2005 From: kratt6 Date: Tue, 04 Oct 2005 05:51:35 -0500 Subject: applied in patch-41 Message-ID: <20051004055135-0500@wiki.axiom-developer.org> Status: fix proposed => closed
axiomp := -x*y^2+x*y+x^3-x^2
(1) |
axiomD(factor(p),x)
(2) |
axiomD(p,x)
(3) |
Note that the factorization is correct. It's the D(.,x) that misses the sign.
differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo (fr := unit(u)::%))::%) ans + fr * (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])
It intends to use the formula
where
Therefore, the fix is to leave away the 'fr':
differentiate(u:%, deriv: R -> R) == ans := deriv(unit u) * ((u exquo unit(u)::%)::%) ans + (_+/[fact.xpnt * deriv(fact.fctr) * ((u exquo nilFactor(fact.fctr, 1))::%) for fact in factorList u])
Martin
Status: fix proposed => closed