login  home  contents  what's new  discussion  bug reports     help  links  subscribe  changes  refresh  edit

Submitted by : (unknown) at: 2007-11-17T21:55:49-08:00 (17 years ago)
Name :
Axiom Version :
Category : Severity : Status :
Optional subject :  
Optional comment :

Original Issue Report

fricas
(1) -> digamma 2

\label{eq1}digamma \left({2}\right)(1)
Type: Expression(Integer)

Has to return digamma(2) (EXPR INT)

Analysis

The statement of the issue is to terse and vague to be sure what the author had in mind, but assuming that s/he expected the result to be of type EXPR INT, here is how to see what is going on. Use the option )set message selection on to trace how Axiom finds the signature of the appropriate digamma function:

fricas
)set message selection on
digamma 2
Function Selection for digamma Arguments: PI
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT) [2] signature: FLOAT -> FLOAT implemented: slot (Float)(Float) from FSFUN [3] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN [4] signature: COMPLEX(FLOAT) -> COMPLEX(FLOAT) implemented: slot (Complex (Float))(Complex (Float)) from FSFUN

\label{eq2}digamma \left({2}\right)(2)
Type: Expression(Integer)

Axiom finds 3 possible signatures and applies the first one because 2 can be coerced to DoubleFloat?. But we can ask Axiom to take the third option by either specifically treating the type of the input 2 as EXPR INT or by asking for something of type EXPR INT as the result.

fricas
digamma(2::EXPR INT)
Function Selection for digamma Arguments: EXPR(INT)
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT)

\label{eq3}digamma \left({2}\right)(3)
Type: Expression(Integer)
fricas
digamma(2)@(EXPR INT)
Function Selection for digamma Arguments: EXPR(INT) Target type: EXPR(INT) -> no appropriate digamma found in Integer
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT)

\label{eq4}digamma \left({2}\right)(4)
Type: Expression(Integer)

Of course as something of type EXPR INT this expression has no simplier representation.

this works as documented --Bill Page, Wed, 23 Mar 2005 16:17:27 -0600 reply
Status: open => rejected

Sorry to respond to this but in Axiom, all trigonometric, transcendental etc.. functions is returned in EXPR INT if there is no integer functions. I think that Axiom has to return digamma(2) and digamma(2.0) the SF result. This permit to work directly on expression. You can test some other symbolic CAS.But may be I'm wrong.

PLEASE RESPOND and THANK YOU --Bill Page, Wed, 23 Mar 2005 18:06:05 -0600 reply
Please do not be "sorry to respond" - that is the purpose of this website!

By the way, I think it would be polite (but it is not necessary) for you identify yourself by clicking on preferences rather than remaining anonymous.

What I think you mean is this: Why is the mode selection for the following pairs of expressions different?

fricas
)set message selection on
sin(2)
Function Selection for sin Arguments: PI -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has TRIGCAT
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT)

\label{eq5}\sin \left({2}\right)(5)
Type: Expression(Integer)
fricas
digamma(2)
Function Selection for digamma Arguments: PI
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT) [2] signature: FLOAT -> FLOAT implemented: slot (Float)(Float) from FSFUN [3] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN [4] signature: COMPLEX(FLOAT) -> COMPLEX(FLOAT) implemented: slot (Complex (Float))(Complex (Float)) from FSFUN

\label{eq6}digamma \left({2}\right)(6)
Type: Expression(Integer)

and

fricas
sin(2.0)
Function Selection for float Arguments: (INT, INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT, INT, PI) -> FLOAT implemented: slot (Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for sin Arguments: FLOAT
[1] signature: FLOAT -> FLOAT implemented: slot from FLOAT

\label{eq7}0.9092974268 \<u> 256816954(7)
Type: Float
fricas
digamma(2.0)
Function Selection for float Arguments: (INT, INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT, INT, PI) -> FLOAT implemented: slot (Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT -> no appropriate digamma found in Float -> no appropriate digamma found in Float
Modemaps from Associated Packages [1] Complex(Float) -> Complex(Float) from FloatSpecialFunctions [2] Float -> Float from FloatSpecialFunctions [3] Complex(DoubleFloat) -> Complex(DoubleFloat) from DoubleFloatSpecialFunctions
[1] signature: FLOAT -> FLOAT implemented: slot (Float)(Float) from FSFUN [2] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN [3] signature: COMPLEX(FLOAT) -> COMPLEX(FLOAT) implemented: slot (Complex (Float))(Complex (Float)) from FSFUN

\label{eq8}0.4227843350 \<u> 9846713939 \</u> 3487909919 \<u> 85(8)
Type: Float

Since sin is defined in DoubleFloat? and digamma is defined in DoubleFloatSpecialFunctions? one should expect similar treatment.

fricas
)show DoubleFloat
DoubleFloat is a domain constructor. Abbreviation for DoubleFloat is DFLOAT This constructor is exposed in this frame. 180 Names for 220 Operations in this Domain. ------------------------------- Operations --------------------------------
?*? : (Integer, %) -> % ?*? : (PositiveInteger, %) -> % ?*? : (%, %) -> % ?+? : (%, %) -> % ?-? : (%, %) -> % -? : % -> % ?/? : (%, Integer) -> % ?/? : (%, %) -> % ?<? : (%, %) -> Boolean ?<=? : (%, %) -> Boolean ?=? : (%, %) -> Boolean ?>? : (%, %) -> Boolean ?>=? : (%, %) -> Boolean Beta : (%, %, %) -> % Beta : (%, %) -> % D : (%, NonNegativeInteger) -> % D : % -> % Gamma : (%, %) -> % Gamma : % -> % OMwrite : (%, Boolean) -> String OMwrite : % -> String 1 : () -> % 0 : () -> % ?^? : (%, Integer) -> % ?^? : (%, PositiveInteger) -> % ?^? : (%, %) -> % abs : % -> % acos : % -> % acosh : % -> % acot : % -> % acoth : % -> % acsc : % -> % acsch : % -> % airyAi : % -> % airyAiPrime : % -> % airyBi : % -> % airyBiPrime : % -> % angerJ : (%, %) -> % annihilate? : (%, %) -> Boolean antiCommutator : (%, %) -> % asec : % -> % asech : % -> % asin : % -> % asinh : % -> % associates? : (%, %) -> Boolean associator : (%, %, %) -> % atan : (%, %) -> % atan : % -> % atanh : % -> % base : () -> PositiveInteger besselI : (%, %) -> % besselJ : (%, %) -> % besselK : (%, %) -> % besselY : (%, %) -> % bits : () -> PositiveInteger ceiling : % -> % charlierC : (%, %, %) -> % coerce : % -> OutputForm coerce : Fraction(Integer) -> % coerce : Integer -> % coerce : % -> % commutator : (%, %) -> % conjugate : % -> % convert : % -> DoubleFloat convert : % -> Float convert : % -> InputForm convert : % -> Pattern(Float) convert : % -> String cos : % -> % cosh : % -> % cot : % -> % coth : % -> % csc : % -> % csch : % -> % differentiate : % -> % digamma : % -> % digits : () -> PositiveInteger diracDelta : % -> % ellipticE : (%, %) -> % ellipticE : % -> % ellipticF : (%, %) -> % ellipticK : % -> % ellipticPi : (%, %, %) -> % exp : % -> % exp1 : () -> % exponent : % -> Integer factor : % -> Factored(%) float : (Integer, Integer) -> % floor : % -> % fractionPart : % -> % gcd : List(%) -> % gcd : (%, %) -> % hankelH1 : (%, %) -> % hankelH2 : (%, %) -> % hash : % -> SingleInteger hermiteH : (%, %) -> % inv : % -> % jacobiCn : (%, %) -> % jacobiDn : (%, %) -> % jacobiP : (%, %, %, %) -> % jacobiSn : (%, %) -> % jacobiTheta : (%, %) -> % jacobiZeta : (%, %) -> % kelvinBei : (%, %) -> % kelvinBer : (%, %) -> % kelvinKei : (%, %) -> % kelvinKer : (%, %) -> % kummerM : (%, %, %) -> % kummerU : (%, %, %) -> % laguerreL : (%, %, %) -> % lambertW : % -> % latex : % -> String lcm : List(%) -> % lcm : (%, %) -> % legendreP : (%, %, %) -> % legendreQ : (%, %, %) -> % lerchPhi : (%, %, %) -> % log : % -> % log10 : % -> % log2 : % -> % lommelS1 : (%, %, %) -> % lommelS2 : (%, %, %) -> % mantissa : % -> Integer max : (%, %) -> % max : () -> % meixnerM : (%, %, %, %) -> % min : (%, %) -> % min : () -> % negative? : % -> Boolean norm : % -> % nthRoot : (%, Integer) -> % one? : % -> Boolean opposite? : (%, %) -> Boolean order : % -> Integer pi : () -> % polygamma : (%, %) -> % polylog : (%, %) -> % positive? : % -> Boolean precision : () -> PositiveInteger prime? : % -> Boolean qlog : % -> % qsqrt : % -> % ?quo? : (%, %) -> % recip : % -> Union(%,"failed") ?rem? : (%, %) -> % retract : % -> Fraction(Integer) retract : % -> Integer riemannZeta : % -> % round : % -> % sample : () -> % sec : % -> % sech : % -> % sign : % -> Integer sign : % -> % sin : % -> % sinh : % -> % sizeLess? : (%, %) -> Boolean smaller? : (%, %) -> Boolean sqrt : % -> % squareFree : % -> Factored(%) squareFreePart : % -> % struveH : (%, %) -> % struveL : (%, %) -> % tan : % -> % tanh : % -> % toString : % -> String truncate : % -> % unit? : % -> Boolean unitCanonical : % -> % unitStep : % -> % weberE : (%, %) -> % weierstrassP : (%, %, %) -> % whittakerM : (%, %, %) -> % whittakerW : (%, %, %) -> % wholePart : % -> Integer zero? : % -> Boolean ?~=? : (%, %) -> Boolean ?*? : (Fraction(Integer), %) -> % ?*? : (NonNegativeInteger, %) -> % ?*? : (%, Fraction(Integer)) -> % OMwrite : (OpenMathDevice, %, Boolean) -> Void OMwrite : (OpenMathDevice, %) -> Void ?^? : (%, Fraction(Integer)) -> % ?^? : (%, NonNegativeInteger) -> % characteristic : () -> NonNegativeInteger differentiate : (%, NonNegativeInteger) -> % divide : (%, %) -> Record(quotient: %,remainder: %) doubleFloatFormat : String -> String euclideanSize : % -> NonNegativeInteger expressIdealMember : (List(%), %) -> Union(List(%),"failed") exquo : (%, %) -> Union(%,"failed") extendedEuclidean : (%, %) -> Record(coef1: %,coef2: %,generator: %) extendedEuclidean : (%, %, %) -> Union(Record(coef1: %,coef2: %),"failed") float : (Integer, Integer, PositiveInteger) -> % gcdPolynomial : (SparseUnivariatePolynomial(%), SparseUnivariatePolynomial(%)) -> SparseUnivariatePolynomial(%) hashUpdate! : (HashState, %) -> HashState hypergeometricF : (List(%), List(%), %) -> % lcmCoef : (%, %) -> Record(llcm_res: %,coeff1: %,coeff2: %) leftPower : (%, NonNegativeInteger) -> % leftPower : (%, PositiveInteger) -> % leftRecip : % -> Union(%,"failed") meijerG : (List(%), List(%), List(%), List(%), %) -> % multiEuclidean : (List(%), %) -> Union(List(%),"failed") patternMatch : (%, Pattern(Float), PatternMatchResult(Float,%)) -> PatternMatchResult(Float,%) plenaryPower : (%, PositiveInteger) -> % principalIdeal : List(%) -> Record(coef: List(%),generator: %) rationalApproximation : (%, NonNegativeInteger, NonNegativeInteger) -> Fraction(Integer) rationalApproximation : (%, NonNegativeInteger) -> Fraction(Integer) retractIfCan : % -> Union(Fraction(Integer),"failed") retractIfCan : % -> Union(Integer,"failed") rightPower : (%, NonNegativeInteger) -> % rightPower : (%, PositiveInteger) -> % rightRecip : % -> Union(%,"failed") subtractIfCan : (%, %) -> Union(%,"failed") toString : (%, NonNegativeInteger) -> String unitNormal : % -> Record(unit: %,canonical: %,associate: %) weierstrassPInverse : (%, %, %) -> % weierstrassPPrime : (%, %, %) -> % weierstrassSigma : (%, %, %) -> % weierstrassZeta : (%, %, %) -> %
fricas
)show DoubleFloatSpecialFunctions
DoubleFloatSpecialFunctions is a package constructor Abbreviation for DoubleFloatSpecialFunctions is DFSFUN This constructor is exposed in this frame. ------------------------------- Operations --------------------------------
besselI : (DoubleFloat, DoubleFloat) -> DoubleFloat besselI : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselJ : (DoubleFloat, DoubleFloat) -> DoubleFloat besselJ : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselK : (DoubleFloat, DoubleFloat) -> DoubleFloat besselK : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) besselY : (DoubleFloat, DoubleFloat) -> DoubleFloat besselY : (Complex(DoubleFloat), Complex(DoubleFloat)) -> Complex(DoubleFloat) digamma : Complex(DoubleFloat) -> Complex(DoubleFloat) polygamma : (NonNegativeInteger, Complex(DoubleFloat)) -> Complex(DoubleFloat)

please excuse my premature change of status --Bill Page, Wed, 23 Mar 2005 18:10:37 -0600 reply
Status: rejected => open

Treating special functions like Expression Integer --Bill Page, Wed, 23 Mar 2005 20:06:31 -0600 reply
Apparently the difference has something to do with the fact that DoubleFloat? is a domain while DoubleFloatSpecialFunctions? is a package. It is possible to obtain some of the effectst that you want by dropping the DoubleFloatSpecialFunctions? from the list of exposed constructors.
fricas
)set expose drop constructor DoubleFloatSpecialFunctions
DoubleFloatSpecialFunctions is now explicitly hidden in frame initial

Then these are treated the same

fricas
sin(2)
Function Selection for sin Arguments: PI -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer -> no appropriate sin found in PositiveInteger -> no appropriate sin found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has TRIGCAT
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT)

\label{eq9}\sin \left({2}\right)(9)
Type: Expression(Integer)
fricas
digamma(2)
Function Selection for digamma Arguments: PI -> no appropriate digamma found in PositiveInteger -> no appropriate digamma found in Integer -> no appropriate digamma found in PositiveInteger -> no appropriate digamma found in Integer
Modemaps from Associated Packages no modemaps
Remaining General Modemaps [1] D -> D from D if D has SPFCAT [2] Complex(Float) -> Complex(Float) from FloatSpecialFunctions [3] Float -> Float from FloatSpecialFunctions
[1] signature: EXPR(INT) -> EXPR(INT) implemented: slot from EXPR(INT) [2] signature: FLOAT -> FLOAT implemented: slot (Float)(Float) from FSFUN [3] signature: COMPLEX(FLOAT) -> COMPLEX(FLOAT) implemented: slot (Complex (Float))(Complex (Float)) from FSFUN

\label{eq10}digamma \left({2}\right)(10)
Type: Expression(Integer)

except now it is necessary to do a package call to evaluate it even for something that is a floating point value.

fricas
digamma(2.0)
Function Selection for float Arguments: (INT, INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT, INT, PI) -> FLOAT implemented: slot (Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT -> no appropriate digamma found in Float -> no appropriate digamma found in Float
Modemaps from Associated Packages [1] Complex(Float) -> Complex(Float) from FloatSpecialFunctions [2] Float -> Float from FloatSpecialFunctions
[1] signature: FLOAT -> FLOAT implemented: slot (Float)(Float) from FSFUN [2] signature: COMPLEX(FLOAT) -> COMPLEX(FLOAT) implemented: slot (Complex (Float))(Complex (Float)) from FSFUN

\label{eq11}0.4227843350 \<u> 9846713939 \</u> 3487909919 \<u> 85(11)
Type: Float
fricas
digamma(2.0)$DoubleFloatSpecialFunctions
Function Selection for float Arguments: (INT, INT, PI) Target type: FLOAT From: FLOAT
[1] signature: (INT, INT, PI) -> FLOAT implemented: slot (Integer)(Integer)(PositiveInteger) from FLOAT
Function Selection for digamma Arguments: FLOAT Target type: COMPLEX(DFLOAT) From: DFSFUN
[1] signature: COMPLEX(DFLOAT) -> COMPLEX(DFLOAT) implemented: slot (Complex (DoubleFloat))(Complex (DoubleFloat)) from DFSFUN

\label{eq12}0.42278433509846725(12)
Type: Complex(DoubleFloat?)

Icomplete gamma function is missing --unknown, Thu, 24 Mar 2005 11:16:59 -0600 reply
In DoubleFloatSpecialFunctions?, incomplete gamma function is missing. If someone implements it, it's possible to add SpecialFunctionCategory? to the "Exports" of DoubleFloat? (add all these functions... => I don't know why gamma is actually exported by DoubleFloat?), unexpose DoubleFloatSpecialFunctions? and may be SpecialFunction?(Integer) will work as requested. The actual behavior is really annoying
Cheers

Category: Axiom Library => building Axiom from source Severity: serious => normal Status: open => planned

Category: building Axiom from source => Axiom Library Severity: normal => serious Status: planned => open

Status: open => closed




  Subject:   Be Bold !!
  ( 15 subscribers )  
Please rate this page: